

EE276: Homework #1

Due on Friday Jan 16, 6pm - Gradescope entry code: E6VP4X

1. **Example of joint entropy.** Let $p(x, y)$ be given by

		Y	
	X		
		0	1
0		$\frac{1}{10}$	$\frac{3}{10}$
1		$\frac{2}{10}$	$\frac{4}{10}$

Find

- (a) $H(X), H(Y)$.
- (b) $H(X | Y), H(Y | X)$.
- (c) $H(X, Y)$.
- (d) $H(Y) - H(Y | X)$.
- (e) $I(X; Y)$.
- (f) Draw a Venn diagram relating the quantities in (a) through (e).

Numerically round the answers to three decimal places.

2. **Entropy of functions of a random variable.** Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$H(X, g(X)) \stackrel{(a)}{=} H(X) + H(g(X) | X) \quad (1)$$

$$\stackrel{(b)}{=} H(X); \quad (2)$$

$$H(X, g(X)) \stackrel{(c)}{=} H(g(X)) + H(X | g(X)) \quad (3)$$

$$\stackrel{(d)}{\geq} H(g(X)). \quad (4)$$

Thus $H(g(X)) \leq H(X)$.

3. **Entropy of a disjoint mixture.** Let X_1 and X_2 be discrete random variables drawn according to probability mass functions $p_1(\cdot)$ and $p_2(\cdot)$ over the respective alphabets $\mathcal{X}_1 = \{1, 2, \dots, m\}$ and $\mathcal{X}_2 = \{m+1, \dots, n\}$. Let

$$X = \begin{cases} X_1, & \text{with probability } \alpha, \\ X_2, & \text{with probability } 1 - \alpha. \end{cases}$$

- (a) Find $H(X)$ in terms of $H(X_1)$ and $H(X_2)$ and α .

(b) Maximize over α to show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$ and interpret using the notion that $2^{H(X)}$ is the effective alphabet size.

4. **Coin flips.** A fair coin is flipped until the first head occurs. Let X denote the number of flips required.

(a) Find the entropy $H(X)$ in bits. The following expressions may be useful:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \quad \sum_{n=0}^{\infty} n r^n = \frac{r}{(1-r)^2}.$$

(b) A random variable X is drawn according to this distribution. Construct an “efficient” sequence of yes-no questions of the form, “Is X contained in the set S ?” that determine the value of X . Compare $H(X)$ to the expected number of questions required to determine X .

5. **Minimum entropy.** In the following, we use $H(p_1, \dots, p_n) \equiv H(\mathbf{p})$ to denote the entropy $H(X)$ of a random variable X with alphabet $\mathcal{X} := \{1, \dots, n\}$, i.e.,

$$H(X) = - \sum_{i=1}^n p_i \log(p_i).$$

What is the minimum value of $H(p_1, \dots, p_n) = H(\mathbf{p})$ as \mathbf{p} ranges over the set of n -dimensional probability vectors? Find all \mathbf{p} ’s which achieve this minimum.

6. **Mixing increases entropy.** Let $p_i > 0$, $i = 1, 2, \dots, m$. Show that the entropy of a random variable distributed according to $(p_1, \dots, p_i, \dots, p_j, \dots, p_m)$, is less than or equal to the entropy of a random variable distributed according to $(p_1, \dots, \frac{p_i+p_j}{2}, \dots, \frac{p_i+p_j}{2}, \dots, p_m)$.

7. **Infinite entropy. [Bonus]**

This problem shows that the entropy of a discrete random variable can be infinite. (In this question you can take \log as the natural logarithm for simplicity.)

(a) Let $A = \sum_{n=2}^{\infty} (n \log^2 n)^{-1}$. Show that A is finite by bounding the infinite sum by the integral of $(x \log^2 x)^{-1}$.

(b) Show that the integer-valued random variable X distributed as:

$$P(X = n) = (An \log^2 n)^{-1} \text{ for } n = 2, 3, \dots \text{ has entropy } H(X) \text{ given by:}$$

$$H(X) = \log A + \sum_{n=2}^{\infty} \frac{1}{An \log n} + \sum_{n=2}^{\infty} \frac{2 \log \log n}{An \log^2 n}$$

(c) Show that the entropy $H(X) = +\infty$ (by showing that the sum $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ diverges).