EE276: Homework #2 Solutions
Due on Friday Jan 23, 6pm - Gradescope entry code: E6VP4X

1. Data Processing Inequality.
The random variables X, Y and Z, belonging to alphabets X', ), and Z respectively,
form a Markov triplet (X — Y — Z) if p(z|y) = p(z|y, z), or, equivalently, if p(x|y) =
p(zly, 2). If X, Y, Z form a Markov triplet (X —Y — Z), show that:

(a) H(X|Y)=H(X|Y,Z) and H(Z|Y) = H(Z|X,Y)
(b) H(X\Y) < H(X|Z)

(¢) I(X:Y) > I(X;Z) and I(Y; Z) > I(X; Z)

(d)

I
1(X:2) < log )
I

(&) I(X:Z|Y) =0

where the conditional mutual information of random variables X and Y given Z is

defined by

I(X;Y|2) = H(X|Z) = H(X]Y, Z)
p(z,y|2)

=2 pley Ao

,Y,2

Solution: Data Processing Inequality.

(a)
H(X|Y) =Y —p(z,y)log(p(zly))

x?y

= —plx,y, 2)log(p(xy))

x?y7z

= 3" —pl.y.2)log(plaly. 2)

Ty,
= H(X|Y,Z)
where the third equality uses the fact that X and Z are conditionally independent
given Y. A similar argument can be used to show H(Z|Y) = H(Z|X,Y).
(b) (X!Y) H(X|Y,Z) < H(X|Z).
(©) I(X;Y) = H(X) — H(X|Y) > H(X) — H(X|Z) = I(X; Z),
(d) I(X;2) < I(X;Y) < H(Y) <log |V
)

(e) We showed that H(X|Y) = H(X|Z,Y), therefore, I(X;Z|Y) = H(X|Y) —
H(X|Z,Y) = 0.
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2. Conditional mutual information vs. unconditional mutual information. Give
examples of joint random variables X, Y and Z such that

(a)
(b)

I(X;Y | Z) < I(X:Y),
I(X;Y | Z) > I(X:Y).

Solution: Conditional mutual information vs. unconditional mutual information.

(a)

The last corollary to Theorem 2.8.1 in the text states that if X — Y — Z, that
is, if p(z,y | 2) = p(z | 2)p(y | 2), then I(X;Y) > I[(X;Y | Z). Equality holds if
and only if I(X;Z) =0 or X and Z are independent.

A simple example of random variables satisfying the inequality conditions above
is, X is a fair binary random variable and Y = X and Z =Y. In this case,

I(X;Y)=H(X)—HX |Y)=H(X)=1

and,
I(X;Y|Z2)=H(X|Z2)-H(X|Y,Z)=0.
So that I(X;Y) > I(X;Y | Z).

This example is also given in the text. Let XY be independent fair binary
random variables and let Z = X + Y. In this case we have that,

I(X;Y)=0

and,
I(X;Y | Z2)=H(X | Z)=1/2.

So I(X;Y) < I(X;Y | Z). Note that in this case X, Y, Z are not markov.

3. Prefix and Uniquely Decodable codes
Consider the following code:

u | Codeword
a 10
b 00
c 11
d 110

(a)
(b)

Is this a Prefix code?

Argue that this code is uniquely decodable, by describing an algorithm for the
decoding.

Solution: Prefix and Uniquely Decodable
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(a) No. The codeword of ¢ is a prefix of the codeword of d.
(b) We decode the encoded symbols from left to right. At any stage,

e [f the next two bits are 10, output a and move to the third bit.
e If the next two bits are 00, output b and move to the third bit.
e If the next two bits are 11, look at the third bit:
— If it is 1, output ¢ and move to the third bit
— If it is 0, count the number of 0’s after the 11:
x If even (say 2m zeros), decode to ¢b...b with m b’s and move to the
bit after the 0’s.

* If odd (say 2m+ 1 zeros), decode to db...b with m b’s and move to the
bit after the 0’s.

Some examples with their decoding;:

e 11011. It is not possible to split this string as 11 —0 — 11 because there is no
codeword “0” . Therefore the only way is: 110 — 11.

e 1110. It is not possible to split this string as 1 — 11 — 0 or 1 — 110 because
there is no codeword “0” or “1” . Therefore the only way is: 11 — 10.

e 110010. It is not possible to split this string as 110 — 0 — 10 because there is
no codeword “0” . Therefore the only way is: 11 — 00 — 10.

For a more elaborate discussion on this topic read Problem 5.27%. In this prob-
lem,the Sardinas-Patterson test of unique decodability is explained.

4. Relative entropy and the cost of miscoding. Let the random variable X be
defined on {1,2,3,4,5,6} according to pmf p. Let p and another pmf ¢ be

Symbol | p(z) q(z) | Ci(z) Ch(x)
1 12 1/2 [ 0 0
1/8 1/4 | 100 10
1/8 1/16 | 101 1100
1/8 1/16| 110 1101
1/16 1/16 | 1110 1110
1/16 1/16 | 1111 1111

SO W N

(a) Calculate H(X), D(p||q) and D(q||p).

(b) The last two columns above represent codes for the random variable. Verify that
codes C] and Cy are optimal under the respective distributions p and q.

(c) Now assume that we use C5 to code X. What is the average length of the code-
words? By how much does it exceed the entropy H(X), i.e., what is the redun-
dancy of the code?

(d) What is the redundancy if we use code C for a random variable Y with pmf ¢7

Solution:

rom: T.M. Cover and J.A. Thomas, “Elements of Information Theory”, Second Edition,2006.
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1 1 1 1 1 1
H(X) = =-log2+ ~log8+ —log8 + —log8& + — log 16 + — log 16
(X) 5 og +—8 og +—8 og +—8 og +-16 og +_16 og
B 1+3+3+3+4+4
2 8 8 8 16 16
= 2.125.

1 1 1 1 1 1
H(X) = =-log2+ -logd+ —logl6+ —logl6+ —log16 + — log 16
(X) 20g +40g +160g +160g +160g +16og
1+2+4+4+4+4
2 4 16 16 16 16
2.

Lets calculate D(p||q),

1 11 1 1 1 1
D = Zlogl+=log=—+=log2+ =log2+ —1logl+ —log1
(pllq) 5logl+ clogo + clog2+ clog2 + xlogl+ - log
1

1 1 1
= —log-+ -log2+ —log2

8§ °2 '8 8
= 1/8.
Similarly
1 1 11 1. 1 1 1
D = Zlog2+ -log2+ —log =+ —log = + —logl+ —log1
(qllp) 5log2+ 1 log2+ log s + clog o + - logl + o log
L 94 L logt 4+ Lo
19%° T 16782 " 16 %3
I
4 16 16
1
=z

ElX)] = sH+<c+st+o+—=+—

and for X ~ ¢, the expected length of 5 is

1 2 4 4 4 4
EUX)] = s+ -+—=+—+—=+—

27171616 16 ' 16
= 2
— H(X)

and thus both C; and (5 are optimal codes.
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(c) Average length of the codeword when C} is assigned to X ~ p is

B = Leletid it d
— 295
= H(X)+.125
= H(X)+ D(pllg)!

(d) Similarly the average length of the codeword when C is assigned to Y ~ ¢ is

1 3 3 3 4 4
ENY) = —4°24°2 .2 2 =%
] 51716716716 16
= H(Y)+.125
= H(Y)+ D(qlp)!

5. Shannon code. Consider the following method for generating a code for a random
variable X which takes on m values {1,2 ..., m} with pmf p having probabilities
P1, P2, ..., Pm- Assume that the probabilities are ordered so that p; > py > -+ > p,,.

Define .
Fi = Zplm
k=1

i.e. the sum of the probabilities of all symbols less than ¢. Then the codeword for i is
the number F; € [0, 1] rounded off to I; bits, where [; = [log pi}

(a) Show that the code constructed by this process is prefix-free and the average
length satisfies

H(X) <L < H(X)+1.
(b) Construct the code for the probability distribution (0.5,0.25,0.125,0.125).

(¢) Now, suppose the code in (a) is used on a random variable X taking values in
{1,2,...,m} distributed with pmf ¢ having probabilities ¢1, go, . . . ¢. Show that
the average length satisfies

H(X)+ D(q|lp) < L < H(X) + D(q||p) + 1

Solution:

Shannon code.
(a) Since l; = [log iﬂ, we have
1 1
log— <l; <log—+1

which implies that
H(X)<L=> pli<HX)+1
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The difficult part is to prove that the code is a prefix code. By the choice of [;,
we have
27l < p; < 9—(li=1)

Thus Fj, j > i differs from F; by at least 27", and will therefore differ from F;
is at least one place in the first [; bits of the binary expansion of F;. Thus the
codeword for Fj, j > 7, which has length {; > [;, differs from the codeword for
F; at least once in the first [; places. Thus no codeword is a prefix of any other
codeword.

(b) We build the following table
Symbol Probability F; in decimal F; in binary [; Codeword

1 0.5 0.0 0.0 1 0

2 0.25 0.5 0.10 2 10

3 0.125 0.75 0.110 3 110

4 0.125 0.875 0.111 3 111
The Shannon code in this case achieves the entropy bound (1.75 bits) and is
optimal.

(c) Just as in (a), we have

1 1
log— <I[; <log—+1

i Di

which implies that
1 1
Zqilog; < ZQili < Zqilog; +1
1 di 1 qi
Zqilog— +Zqilog— <L< Zqilog— —l—qu-log— +1
P di p Di ; qi p bi
H(X)+ D(qllp) < L < H(X) + D(q|lp) + 1
6. AEP. Let X; for i € {1,...,n} be an ii.d. sequence from the p.m.f. p(z) with

alphabet X = {1,2,...,m}. Denote the expectation and entropy of X by u := E[X]
and H := — > p(x)log p(z) respectively.

For € > 0, recall the definition of the typical set

1
0= | Ly < )
n

<of.

and define the following set

1 n
: E;%‘—M

In what follows, € > 0 is fixed.

(a) Does P (X” € AE")> —1asn— oo?
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(b) Does P (X" e A™n Be(n)) — 1lasn — oo?

(¢) Show that for all n,

(d) Show that for all n sufficiently large:

A0 B0 > (5) 20

Solution: AEP

(a) Yes, by the AEP for discrete random variables the probability X" is typical goes
to 1.

(b) Yes, by the Law of Large Numbers P(X" € BE(")) — 1. So there exists € > 0 and
Nj such that P(X™ € AE")) >1— 5 for all n > N, and there exists N, such that
P(X" e BE(")) >1— 5 for all n > N,. So for all n > max(Ny, Ny):

P(X" € AW N BM) = P(X"ec A™) 4 P(X" € B™) - P(X" € A™ U B™)
€ €
> 1—-4+1-—--1
2 T3
= 1—ce€

So for any € > 0 there exists N = max(Ny, N2) such that P(X™ € A N Be(n)) >
1 — e for all n > N, therefore P(X" € A A Be(n)) — 1.

(c) By the law of total probability >, _,mgm p(z") < 1. Also, for 2" € A from
Theorem 3.1.2 in the text, p(z") > 27"(+9)  Combining these two equations
gives 1 > aneAg%Bgn) pla™) > ZanAgn)ntn) g—n(H+e) _ |A£n) n Be(n)|2fn(H+e)‘
Multiplying through by 2"+ gives the result |A£n) N Bg(n)| < gnlH+e),

(d) Since from (b) P{X" € A Be(n)} — 1, there exists N such that P{X" €

A" n BE(")} > % for all n > N. From Theorem 3.1.2 in the text, for 2" € A™,

p(z") < 279 So combining these two gives % < aneAgn)mBén) p(z™) <
Zm"EA(n)ﬂB(") 9-nH=) — |A£”) N Bén)|2*”(H*€). Multiplying through by 27(#-¢

gives the result |A™ N BM| > (£)2"=9 for n sufficiently large.

7. An AEP-like limit and the AEP (Bonus)

(a) Let X7, Xs,... beii.d. drawn according to probability mass function p(z). Find
the limit in probability as n — oo of

S|=

p(Xl,XQ, e ,Xn) .
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(b) Let Xi, Xs,... be an ii.d. sequence of discrete random variables with entropy
H(X). Let
Co(t) = {a" € X" : p(a™) > 27"}
denote the subset of n-length sequences with probabilities > 27",
i. Show that |C,(¢)| < 2™.
ii. What is lim,, oo P(X"™ € C,(t)) when t < H(X)? And when ¢t > H(X)?

Solution: An AEP-like limit and the AEP.

(a) By the AEP, we know that for every § > 0,

lim P (—H(X) —0< llogp(Xl,XQ,...,Xn) < —H(X)+(5) =1
n

n—o0

Now, fix € > 0 (sufficiently small) and choose § = min{log(1 + 27X)¢), —log(1 —
2H(X) €)Y, Then, 277X (20 — 1) < e and 277X (279 — 1) > —¢. Thus,

1
n
— 2710270 < (p(X1, Xa, ..., X,,))w < 271090

— Q_H(X)@_(S —1) < (p(Xy, X, ... ,Xn))% — 9 HX) < 2—H(X)(25 —1)
— — < (p(X1, Xy, X)) —27HX) < ¢

This along with AEP implies that P(|p(X1, Xs,..., X,))n — 275X < ¢) — 1
for all € > 0 and hence (p(X1, Xa, ..., X,))* converges to 277X in probability.
This proof can be shortened by directly invoking the continuous mapping theo-
rem, which says that if Z, converges to Z in probability and f is a continuous
function, then f(Z,) converges to f(Z) in probability.

zneCh (t)
= [Ca(t))27

Thus, |C,(t)] < 2™.
ii. Given the size of C,,(t) from part (i), AEP directly implies that lim,,_,., P(X" €
Cn(t)) =0 for t < H(X) and lim,, o P(X"™ € C,(t)) =1 for t > H(X).
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