
EE276: Homework #2 Solutions
Due on Friday Jan 23, 6pm - Gradescope entry code: E6VP4X

1. Data Processing Inequality.
The random variables X, Y and Z, belonging to alphabets X , Y , and Z respectively,
form a Markov triplet (X − Y − Z) if p(z|y) = p(z|y, x), or, equivalently, if p(x|y) =
p(x|y, z). If X, Y , Z form a Markov triplet (X − Y − Z), show that:

(a) H(X|Y ) = H(X|Y, Z) and H(Z|Y ) = H(Z|X, Y )

(b) H(X|Y ) ≤ H(X|Z)
(c) I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z)

(d) I(X;Z) ≤ log |Y|
(e) I(X;Z|Y ) = 0

where the conditional mutual information of random variables X and Y given Z is
defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Solution: Data Processing Inequality.

(a)

H(X|Y ) =
∑
x,y

−p(x, y) log(p(x|y))

=
∑
x,y,z

−p(x, y, z) log(p(x|y))

=
∑
x,y,z

−p(x, y, z) log(p(x|y, z))

= H(X|Y, Z)

where the third equality uses the fact that X and Z are conditionally independent
given Y . A similar argument can be used to show H(Z|Y ) = H(Z|X,Y ).

(b) H(X|Y ) = H(X|Y, Z) ≤ H(X|Z).
(c) I(X;Y ) = H(X)−H(X|Y ) ≥ H(X)−H(X|Z) = I(X;Z).

(d) I(X;Z) ≤ I(X;Y ) ≤ H(Y ) ≤ log |Y|
(e) We showed that H(X|Y ) = H(X|Z, Y ), therefore, I(X;Z|Y ) = H(X|Y ) −

H(X|Z, Y ) = 0.
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2. Conditional mutual information vs. unconditional mutual information. Give
examples of joint random variables X, Y and Z such that

(a) I(X;Y | Z) < I(X;Y ),

(b) I(X;Y | Z) > I(X;Y ).

Solution: Conditional mutual information vs. unconditional mutual information.

(a) The last corollary to Theorem 2.8.1 in the text states that if X → Y → Z, that
is, if p(x, y | z) = p(x | z)p(y | z), then I(X;Y ) ≥ I(X;Y | Z). Equality holds if
and only if I(X;Z) = 0 or X and Z are independent.

A simple example of random variables satisfying the inequality conditions above
is, X is a fair binary random variable and Y = X and Z = Y . In this case,

I(X;Y ) = H(X)−H(X | Y ) = H(X) = 1

and,
I(X;Y | Z) = H(X | Z)−H(X | Y, Z) = 0.

So that I(X;Y ) > I(X;Y | Z).
(b) This example is also given in the text. Let X,Y be independent fair binary

random variables and let Z = X + Y . In this case we have that,

I(X;Y ) = 0

and,
I(X;Y | Z) = H(X | Z) = 1/2.

So I(X;Y ) < I(X;Y | Z). Note that in this case X, Y, Z are not markov.

3. Prefix and Uniquely Decodable codes
Consider the following code:

u Codeword
a 1 0
b 0 0
c 1 1
d 1 1 0

(a) Is this a Prefix code?

(b) Argue that this code is uniquely decodable, by describing an algorithm for the
decoding.

Solution: Prefix and Uniquely Decodable

Page 2 of 8 EE 276, Winter Quarter 2026



(a) No. The codeword of c is a prefix of the codeword of d.

(b) We decode the encoded symbols from left to right. At any stage,

• If the next two bits are 10, output a and move to the third bit.

• If the next two bits are 00, output b and move to the third bit.

• If the next two bits are 11, look at the third bit:

– If it is 1, output c and move to the third bit

– If it is 0, count the number of 0’s after the 11:

∗ If even (say 2m zeros), decode to cb . . . b with m b’s and move to the
bit after the 0’s.

∗ If odd (say 2m+1 zeros), decode to db . . . b with m b’s and move to the
bit after the 0’s.

Some examples with their decoding:

• 11011. It is not possible to split this string as 11− 0− 11 because there is no
codeword “0” . Therefore the only way is: 110− 11.

• 1110. It is not possible to split this string as 1 − 11 − 0 or 1 − 110 because
there is no codeword “0” or “1” . Therefore the only way is: 11− 10.

• 110010. It is not possible to split this string as 110− 0− 10 because there is
no codeword “0” . Therefore the only way is: 11− 00− 10.

For a more elaborate discussion on this topic read Problem 5.271. In this prob-
lem,the Sardinas-Patterson test of unique decodability is explained.

4. Relative entropy and the cost of miscoding. Let the random variable X be
defined on {1, 2, 3, 4, 5, 6} according to pmf p. Let p and another pmf q be

Symbol p(x) q(x) C1(x) C2(x)
1 1/2 1/2 0 0
2 1/8 1/4 100 10
3 1/8 1/16 101 1100
4 1/8 1/16 110 1101
5 1/16 1/16 1110 1110
6 1/16 1/16 1111 1111

(a) Calculate H(X), D(p||q) and D(q||p).
(b) The last two columns above represent codes for the random variable. Verify that

codes C1 and C2 are optimal under the respective distributions p and q.

(c) Now assume that we use C2 to code X. What is the average length of the code-
words? By how much does it exceed the entropy H(X), i.e., what is the redun-
dancy of the code?

(d) What is the redundancy if we use code C1 for a random variable Y with pmf q?

Solution:

1from: T.M. Cover and J.A. Thomas, “Elements of Information Theory”, Second Edition,2006.
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(a) For X ∼ p

H(X) =
1

2
log 2 +

1

8
log 8 +

1

8
log 8 +

1

8
log 8 +

1

16
log 16 +

1

16
log 16

=
1

2
+

3

8
+

3

8
+

3

8
+

4

16
+

4

16
= 2.125.

For X ∼ q

H(X) =
1

2
log 2 +

1

4
log 4 +

1

16
log 16 +

1

16
log 16 +

1

16
log 16 +

1

16
log 16

=
1

2
+

2

4
+

4

16
+

4

16
+

4

16
+

4

16
= 2.

Lets calculate D(p||q),

D(p||q) =
1

2
log 1 +

1

8
log

1

2
+

1

8
log 2 +

1

8
log 2 +

1

16
log 1 +

1

16
log 1

=
1

8
log

1

2
+

1

8
log 2 +

1

8
log 2

= 1/8.

Similarly

D(q||p) =
1

2
log 2 +

1

4
log 2 +

1

16
log

1

2
+

1

16
log

1

2
+

1

16
log 1 +

1

16
log 1

=
1

4
log 2 +

1

16
log

1

2
+

1

16
log

1

2

=
1

4
− 1

16
− 1

16

=
1

8
.

(b) For X ∼ p, the expected length of C1 is

E[ℓ(X)] =
1

2
+

3

8
+

3

8
+

3

8
+

4

16
+

4

16
= 2.125

= H(X)

and for X ∼ q , the expected length of C2 is

E[ℓ(X)] =
1

2
+

2

4
+

4

16
+

4

16
+

4

16
+

4

16
= 2

= H(X)

and thus both C1 and C2 are optimal codes.
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(c) Average length of the codeword when C2 is assigned to X ∼ p is

E[ℓ(X)] =
1

2
+

2

8
+

4

8
+

4

8
+

4

16
+

4

16
= 2.25

= H(X) + .125

= H(X) +D(p||q)!

(d) Similarly the average length of the codeword when C1 is assigned to Y ∼ q is

E[ℓ(Y )] =
1

2
+

3

4
+

3

16
+

3

16
+

4

16
+

4

16
= 2.125

= H(Y ) + .125

= H(Y ) +D(q||p)!

5. Shannon code. Consider the following method for generating a code for a random
variable X which takes on m values {1, 2, . . . ,m} with pmf p having probabilities
p1, p2, . . . , pm. Assume that the probabilities are ordered so that p1 ≥ p2 ≥ · · · ≥ pm.
Define

Fi =
i−1∑
k=1

pk,

i.e. the sum of the probabilities of all symbols less than i. Then the codeword for i is
the number Fi ∈ [0, 1] rounded off to li bits, where li = ⌈log 1

pi
⌉.

(a) Show that the code constructed by this process is prefix-free and the average
length satisfies

H(X) ≤ L < H(X) + 1.

(b) Construct the code for the probability distribution (0.5, 0.25, 0.125, 0.125).

(c) Now, suppose the code in (a) is used on a random variable X̃ taking values in
{1, 2, . . . ,m} distributed with pmf q having probabilities q1, q2, . . . qm. Show that
the average length satisfies

H(X̃) +D(q||p) ≤ L < H(X̃) +D(q||p) + 1

Solution:

Shannon code.

(a) Since li = ⌈log 1
pi
⌉, we have

log
1

pi
≤ li < log

1

pi
+ 1

which implies that

H(X) ≤ L =
∑

pili < H(X) + 1.
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The difficult part is to prove that the code is a prefix code. By the choice of li,
we have

2−li ≤ pi < 2−(li−1).

Thus Fj, j > i differs from Fi by at least 2−li , and will therefore differ from Fi

is at least one place in the first li bits of the binary expansion of Fi. Thus the
codeword for Fj, j > i, which has length lj ≥ li, differs from the codeword for
Fi at least once in the first li places. Thus no codeword is a prefix of any other
codeword.

(b) We build the following table

Symbol Probability Fi in decimal Fi in binary li Codeword
1 0.5 0.0 0.0 1 0
2 0.25 0.5 0.10 2 10
3 0.125 0.75 0.110 3 110
4 0.125 0.875 0.111 3 111

The Shannon code in this case achieves the entropy bound (1.75 bits) and is
optimal.

(c) Just as in (a), we have

log
1

pi
≤ li < log

1

pi
+ 1

which implies that ∑
i

qi log
1

pi
≤

∑
i

qili <
∑
i

qi log
1

pi
+ 1

∑
i

qi log
1

qi
+
∑
i

qi log
qi
pi

≤ L <
∑
i

qi log
1

qi
+
∑
i

qi log
qi
pi

+ 1

H(X̃) +D(q||p) ≤ L < H(X̃) +D(q||p) + 1

6. AEP. Let Xi for i ∈ {1, . . . , n} be an i.i.d. sequence from the p.m.f. p(x) with
alphabet X = {1, 2, . . . ,m}. Denote the expectation and entropy of X by µ := E[X]
and H := −

∑
p(x) log p(x) respectively.

For ϵ > 0, recall the definition of the typical set

A(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣− 1

n
log p(xn)−H

∣∣∣∣ ≤ ϵ

}
and define the following set

B(n)
ϵ =

{
xn ∈ X n :

∣∣∣∣∣ 1n
n∑

i=1

xi − µ

∣∣∣∣∣ ≤ ϵ

}
.

In what follows, ϵ > 0 is fixed.

(a) Does P
(
Xn ∈ A

(n)
ϵ

)
→ 1 as n → ∞?
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(b) Does P
(
Xn ∈ A

(n)
ϵ ∩B

(n)
ϵ

)
→ 1 as n → ∞?

(c) Show that for all n,
|A(n)

ϵ ∩B(n)
ϵ | ≤ 2n(H+ϵ).

(d) Show that for all n sufficiently large:

|A(n)
ϵ ∩B(n)

ϵ | ≥
(
1

2

)
2n(H−ϵ).

Solution: AEP

(a) Yes, by the AEP for discrete random variables the probability Xn is typical goes
to 1.

(b) Yes, by the Law of Large Numbers P (Xn ∈ B
(n)
ϵ ) → 1. So there exists ϵ > 0 and

N1 such that P (Xn ∈ A
(n)
ϵ ) > 1− ϵ

2
for all n > N1, and there exists N2 such that

P (Xn ∈ B
(n)
ϵ ) > 1− ϵ

2
for all n > N2. So for all n > max(N1, N2):

P (Xn ∈ A(n)
ϵ ∩B(n)

ϵ ) = P (Xn ∈ A(n)
ϵ ) + P (Xn ∈ B(n)

ϵ )− P (Xn ∈ A(n)
ϵ ∪B(n)

ϵ )

> 1− ϵ

2
+ 1− ϵ

2
− 1

= 1− ϵ

So for any ϵ > 0 there exists N = max(N1, N2) such that P (Xn ∈ A
(n)
ϵ ∩B

(n)
ϵ ) >

1− ϵ for all n > N , therefore P (Xn ∈ A
(n)
ϵ ∩B

(n)
ϵ ) → 1.

(c) By the law of total probability
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≤ 1. Also, for xn ∈ A

(n)
ϵ , from

Theorem 3.1.2 in the text, p(xn) ≥ 2−n(H+ϵ). Combining these two equations

gives 1 ≥
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≥

∑
xn∈A(n)

ϵ ∩B(n)
ϵ

2−n(H+ϵ) = |A(n)
ϵ ∩ B

(n)
ϵ |2−n(H+ϵ).

Multiplying through by 2n(H+ϵ) gives the result |A(n)
ϵ ∩B

(n)
ϵ | ≤ 2n(H+ϵ).

(d) Since from (b) P{Xn ∈ A
(n)
ϵ ∩ B

(n)
ϵ } → 1, there exists N such that P{Xn ∈

A
(n)
ϵ ∩ B

(n)
ϵ } ≥ 1

2
for all n > N . From Theorem 3.1.2 in the text, for xn ∈ A

(n)
ϵ ,

p(xn) ≤ 2−n(H−ϵ). So combining these two gives 1
2

≤
∑

xn∈A(n)
ϵ ∩B(n)

ϵ
p(xn) ≤∑

xn∈A(n)
ϵ ∩B(n)

ϵ
2−n(H−ϵ) = |A(n)

ϵ ∩ B
(n)
ϵ |2−n(H−ϵ). Multiplying through by 2n(H−ϵ)

gives the result |A(n)
ϵ ∩B

(n)
ϵ | ≥ (1

2
)2n(H−ϵ) for n sufficiently large.

7. An AEP-like limit and the AEP (Bonus)

(a) Let X1, X2, . . . be i.i.d. drawn according to probability mass function p(x). Find
the limit in probability as n → ∞ of

p(X1, X2, . . . , Xn)
1
n .
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(b) Let X1, X2, . . . be an i.i.d. sequence of discrete random variables with entropy
H(X). Let

Cn(t) = {xn ∈ X n : p(xn) ≥ 2−nt}
denote the subset of n-length sequences with probabilities ≥ 2−nt.

i. Show that |Cn(t)| ≤ 2nt.

ii. What is limn→∞ P (Xn ∈ Cn(t)) when t < H(X)? And when t > H(X)?

Solution: An AEP-like limit and the AEP.

(a) By the AEP, we know that for every δ > 0,

lim
n→∞

P

(
−H(X)− δ ≤ 1

n
log p(X1, X2, . . . , Xn) ≤ −H(X) + δ

)
= 1

Now, fix ϵ > 0 (sufficiently small) and choose δ = min{log(1 + 2H(X)ϵ),− log(1−
2H(X)ϵ)}. Then, 2−H(X)(2δ − 1) ≤ ϵ and 2−H(X)(2−δ − 1) ≥ −ϵ. Thus,

−H(X)− δ ≤ 1

n
log p(X1, X2, . . . , Xn) ≤ −H(X) + δ

=⇒ 2−H(X)2−δ ≤ (p(X1, X2, . . . , Xn))
1
n ≤ 2−H(X)2δ

=⇒ 2−H(X)(2−δ − 1) ≤ (p(X1, X2, . . . , Xn))
1
n − 2−H(X) ≤ 2−H(X)(2δ − 1)

=⇒ − ϵ ≤ (p(X1, X2, . . . , Xn))
1
n − 2−H(X) ≤ ϵ

This along with AEP implies that P (|p(X1, X2, . . . , Xn))
1
n − 2−H(X)| ≤ ϵ) → 1

for all ϵ > 0 and hence (p(X1, X2, . . . , Xn))
1
n converges to 2−H(X) in probability.

This proof can be shortened by directly invoking the continuous mapping theo-
rem, which says that if Zn converges to Z in probability and f is a continuous
function, then f(Zn) converges to f(Z) in probability.

(b) i.

1 ≥
∑

xn∈Cn(t)

p(xn)

≥
∑

xn∈Cn(t)

2−nt

= |Cn(t)|2−nt

Thus, |Cn(t)| ≤ 2nt.

ii. Given the size of Cn(t) from part (i), AEP directly implies that limn→∞ P (Xn ∈
Cn(t)) = 0 for t < H(X) and limn→∞ P (Xn ∈ Cn(t)) = 1 for t > H(X).
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