
EE276: Homework #3
Due on Friday Jan 30, 6pm - Gradescope entry code: E6VP4X

1. Arithmetic Coding.
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Figure 1: Illustration of arithmetic coding.

Note: Throughout this problem, we will work with digits rather than bits for simplicity.
So the logarithms will be base 10 and the compressor will output digits {0, 1, . . . , 9}.
This problem introduces a simplified version of arithmetic coding, which is itself based
on Shannon-Fano-Elias coding. Arithmetic coding takes as input a sequence xn ∈ X n

and a distribution q over X . The encoder maintains an interval which is transformed
at each step as follows:

• Start with I0 = [0, 1).

• For i = 1, . . . , n:

– Divide Ii−1 into |X | half-open subintervals {I(x)i−1, x ∈ X} with length of I
(x)
i−1

proportional to q(x), i.e.,
∣∣∣I(x)i−1

∣∣∣ = q(x) |Ii−1| for x ∈ X .

– Set Ii = I
(xi)
i−1

Figure 1 shows an example of this for X = {R,G,B}, (q(R), q(G), q(B)) = (0.1, 0.2, 0.7)
and x3 = GRB. At the end of this process, the encoder selects a number in the in-
terval In and outputs the digits after the decimal point for that number. In the
example shown, the encoder can output 11, which corresponds to 0.11 ∈ [0.106, 0.12).
While 1103 (corresponding to 0.1103) is also a valid output, the encoder tries to out-
put the shortest possible valid sequence. The YouTube video https://youtu.be/

FdMoL3PzmSA might be helpful for understanding this process even better.

(a) Briefly explain how the decoding might work in a sequential manner. You can
assume that the decoder knows the alphabet, the distribution q and the length of
the source sequence n.
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(b) What is the length of interval In in terms of q and xn?

(c) For the following intervals In obtained by following the above-described process
for some xn, find the length of the shortest output sequence (in digits):

i. [0.095, 0.105)

ii. [0.11, 0.12)

iii. [0.1011, 0.102)

In general, if the interval length is ln, then the shortest output sequence has at

most
⌈
log 1

ln

⌉
digits.

(d) Show that the length l(xn) for the arithmetic encoding output satisfies

l(xn) ≤ log
1

q(x1) . . . q(xn)
+ 1

(e) Suppose that Xn i.i.d.∼ X which has PMF P , and we use arithmetic coding with
q = P . Then show that

1

n
E[l(Xn)] ≤ H(X) +

1

n

Compare this to Huffman coding over blocks of length n with respect to compres-
sion rate and computational complexity.

(f) Suppose both the encoder and the decoder have a prediction algorithm (say a
neural network) that provides probabilities qi(x|xi−1) for all i’s and all x ∈ X .
How would you modify the scheme such that you achieve

l(xn) ≤ log
1

q1(x1)q2(x2|x1) . . . qn(xn|xn−1)
+ 1

Thus, if you have a prediction model for your data, you can apply arithmetic
coding on it - good prediction translating to high probability, in turn translating
to short compressed representations.

2. Entropy Rate.
Consider the Markov process from class taking values in {H,T} with the joint proba-
bility distribution given as

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)
n∏

i=2

P (Xi = xi|Xi−1 = xi−1)

where P (X1 = H) = 1
2
, P (Xi = H|Xi−1 = H) = 3

4
and P (Xi = T |Xi−1 = T ) = 3

4
for

all i > 1.

(a) Directly compute P (X2 = H) and extend that result to show that the process is
stationary (we are only looking for the main idea, no need to write a long proof).

(b) Compute H(Xn|Xn−1, . . . , X1) as a function of n and find the limit as n → ∞.
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(c) Compute 1
n
H(X1, . . . , Xn) as a function of n and find the limit as n → ∞. How

does this relate to the result in part (b)?

3. Individual Sequences and a Universal Compressor.
Note: Ignore integer constraints on codeword lengths throughout this problem.
Notation: h2(p) = −p log2 p− (1− p) log2(1− p) (= binary entropy function).

Let xn be a given arbitrary binary sequence, with n0 0’s and n1 1’s (n1 = n−n0). You
are also provided a compressor Cq which takes in any arbitrary distribution q on {0, 1}
as a parameter, and encodes xn using:

L̄q(x
n) =

1

n
log

1

q(xn)

bits per symbol where q(xn) :=
∏n

i=1 q(xi).

(a) Given the sequence xn, what binary distribution q(x) will you choose as a param-
eter to the compressor Cq, so that L̄q(x

n) is minimized. Your answer (values of
q(0) and q(1)) will be expressible in terms of n, n0 and n1.

(b) When compressing any given individual sequence xn, we also need to store the
parameter distribution q(x) (required for decoding). Show that you can represent
the optimal parameter distribution q(x) from part (a) using log(n+ 1) bits. You
can assume that the decoder knows the length of the source sequence n.

(c) Show that the effective compression rate for compressing xn (in bits per source
symbol) with the distribution q from part (a) is h2(n1/n) + log(n+ 1)/n.

(d) Now suppose that we apply the scheme above to Xn sampled from an i.i.d.
Ber(p) distribution. Show that the expected compression rate approaches h2(p)
as n → ∞, i.e., the scheme is a universal compressor for i.i.d. sources.

4. Elias Coding.
We will construct universal codes for integers that compress any integer valued (hence,
infinite alphabet) random variable almost to its entropy.

(a) Consider the following universal compressor for natural numbers: For x ∈ N =
{1, 2, . . .}, let k(x) denote the length of its binary representation. Define the
codeword c(x) corresponding to x to be k(x) zeros followed by the binary rep-
resentation of x. Compute c(9). Show that c is a prefix code and describe a
decoding strategy for a stream of codewords.

(b) Now we define another code using the previous one. Define the codeword c′(x)
corresponding to x to be c(k(x)) followed by the binary representation of x. Com-
pute c′(9). Show that c′ is a prefix code and describe a decoding strategy for a
stream of codewords.

(c) Let X be a random variable on natural numbers with a decreasing probability
mass function. Show that E[logX] ≤ H(X).
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(d) Show that the average code length of c satisfies

E[l(c(x))] ≤ 2H(X) + 2.

(e) Show that the average code length of c′ satisfies

E[l(c′(x))] ≤ H(X) + 2 log(H(X) + 1) + 3.

5. Extending to Shannon Codes
For a general source, let

n∗
u = ⌈log 1

p(u)
⌉ ∀u ∈ U .

Then, ∑
u∈U

2−n∗
u ≤ 1.

We want to consider a new source p∗(u) = 2−n∗
u . p∗(u) does not sum to 1 over U , but

we claim that we can add a finite number of new symbols to extend the source to
U∗ ⊇ U such that p∗(u) is dyadic over U∗. Prove this claim.

Hint: How can you reduce this problem to showing that certain rational numbers have
a finite binary representation?

6. Decoding LZ77
We encoded a binary sequence using LZ77; we now want to decode the resulting bit-
stream. We first decode it into the triplets and obtain:

(0, 0, 1) (0, 0, 0) (1, 5, 1) (8, 2, 1)
(a) (b) (c) (d)

Recall that the first entry of the triplet indicates how far back in the sequence you
must go to start decoding the phrase; the second entry of the triplet indicates how
many elements from that point should be “copied” into your newest phrase entry; and
the final entry of the tuple indicates the new element (unseen in the past sequence)
that should be added.

Specify how these triplets will now be decoded to reconstruct the original source se-
quence.
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