
EE276: Homework #3 Solutions
Due on Friday Jan 30, 6pm - Gradescope entry code: E6VP4X

1. Arithmetic Coding.
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Figure 1: Illustration of arithmetic coding.

Note: Throughout this problem, we will work with digits rather than bits for simplicity.
So the logarithms will be base 10 and the compressor will output digits {0, 1, . . . , 9}.
This problem introduces a simplified version of arithmetic coding, which is itself based
on Shannon-Fano-Elias coding. Arithmetic coding takes as input a sequence xn ∈ X n

and a distribution q over X . The encoder maintains an interval which is transformed
at each step as follows:

• Start with I0 = [0, 1).

• For i = 1, . . . , n:

– Divide Ii−1 into |X | half-open subintervals {I(x)i−1, x ∈ X} with length of I
(x)
i−1

proportional to q(x), i.e.,
∣∣∣I(x)i−1

∣∣∣ = q(x) |Ii−1| for x ∈ X .

– Set Ii = I
(xi)
i−1

Figure 1 shows an example of this for X = {R,G,B}, (q(R), q(G), q(B)) = (0.1, 0.2, 0.7)
and x3 = GRB. At the end of this process, the encoder selects a number in the in-
terval In and outputs the digits after the decimal point for that number. In the
example shown, the encoder can output 11, which corresponds to 0.11 ∈ [0.106, 0.12).
While 1103 (corresponding to 0.1103) is also a valid output, the encoder tries to out-
put the shortest possible valid sequence. The YouTube video https://youtu.be/

FdMoL3PzmSA might be helpful for understanding this process even better.

(a) Briefly explain how the decoding might work in a sequential manner. You can
assume that the decoder knows the alphabet, the distribution q and the length of
the source sequence n.
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(b) What is the length of interval In in terms of q and xn?

(c) For the following intervals In obtained by following the above-described process
for some xn, find the length of the shortest output sequence (in digits):

i. [0.095, 0.105)

ii. [0.11, 0.12)

iii. [0.1011, 0.102)

In general, if the interval length is ln, then the shortest output sequence has at

most
⌈
log 1

ln

⌉
digits.

(d) Show that the length l(xn) for the arithmetic encoding output satisfies

l(xn) ≤ log
1

q(x1) . . . q(xn)
+ 1

(e) Suppose that Xn i.i.d.∼ X which has PMF P , and we use arithmetic coding with
q = P . Then show that

1

n
E[l(Xn)] ≤ H(X) +

1

n

Compare this to Huffman coding over blocks of length n with respect to compres-
sion rate and computational complexity.

(f) Suppose both the encoder and the decoder have a prediction algorithm (say a
neural network) that provides probabilities qi(x|xi−1) for all i’s and all x ∈ X .
How would you modify the scheme such that you achieve

l(xn) ≤ log
1

q1(x1)q2(x2|x1) . . . qn(xn|xn−1)
+ 1

Thus, if you have a prediction model for your data, you can apply arithmetic
coding on it - good prediction translating to high probability, in turn translating
to short compressed representations.

Solution: Arithmetic Coding.

(a) We first locate the interval I
(x)
0 containing the output number and decode x1 as

the corresponding x. Then we set I1 = I
(x1)
0 and locate the interval I

(x)
1 containing

the output number to decode x2. Repeating this n times, we get back xn.

(b) Length of In is q(x1)× q(x2)× · · · × q(xn).

(c) i. Length 1, output sequence 1 (corresponding to 0.1)

ii. Length 2, output sequence 11 (corresponding to 0.11)

iii. Length 4, output sequence 1011 (corresponding to 0.1011) or 1012, etc.
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(d) From part (b), the length of In is q(x1)× q(x2)× · · · × q(xn). Using part (c), we
get

l(xn) ≤
⌈
log

1

q(x1) . . . q(xn)

⌉
The result follows using the fact that ⌈x⌉ ≤ x+ 1.

(e) Using result from part (d),

l(Xn) ≤ log
1

P (X1) . . . P (Xn)
+ 1

=
n∑

i=1

log
1

P (Xi)

Taking expectation and dividing by n,

1

n
E[l(Xn)] ≤ 1

n

n∑
i=1

E

[
log

1

P (Xi)

]
+

1

n

=
1

n

n∑
i=1

H(P ) +
1

n

= H(P ) +
1

n

As n becomes large, arithmetic coding approaches entropy, which is the optimal
compression rate. Huffman codes also approach the same limit, but are also
optimal for any given n (although the gap becomes pretty small as n increases)
(note that we can show the same 1/n upper bound for Huffman codes). Arithmetic
coding has linear complexity in n, but Huffman codes have exponential complexity
in n (block length) for storing the codebook.

(f) At step i, instead of dividing Ii−1 into subintervals with lengths proportional to
q(x), we divide into subintervals with lengths proportional to qi(x|xi−1). Then
the length of In is q1(x1) × q2(x2|x1) × · · · × qn(xn|xn−1) and the length satisfies
the desired bound (using same proof as part d).

2. Entropy Rate.
Consider the Markov process from class taking values in {H,T} with the joint proba-
bility distribution given as

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)
n∏

i=2

P (Xi = xi|Xi−1 = xi−1)

where P (X1 = H) = 1
2
, P (Xi = H|Xi−1 = H) = 3

4
and P (Xi = T |Xi−1 = T ) = 3

4
for

all i > 1.

(a) Directly compute P (X2 = H) and extend that result to show that the process is
stationary (we are only looking for the main idea, no need to write a long proof).
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(b) Compute H(Xn|Xn−1, . . . , X1) as a function of n and find the limit as n → ∞.

(c) Compute 1
n
H(X1, . . . , Xn) as a function of n and find the limit as n → ∞. How

does this relate to the result in part (b)?

Solution: Entropy Rate.

(a)

P (X2 = H) = P (X1 = T,X2 = H) + P (X1 = H,X2 = H)

= P (X1 = T )P (X2 = H|X1 = T ) + P (X1 = H)P (X2 = H|X1 = H)

=
1

2
× 1

4
+

1

2
× 3

4

=
1

2

Thus, P (X2 = H) = 1
2
. Now by repeating this exercise, it can be shown that

P (Xn = H) = 1
2
for all n. To show that the process is stationary one needs to

show that for any n, k and (x1, . . . , xk) ∈ {H,T}k, the following holds:

P (X1 = x1, . . . , Xk = xk) = P (Xn+1 = x1, . . . , Xn+k = xk)

By the definition of the Markov process, we have

P (X1 = x1, . . . , Xk = xk) = P (X1 = x1)
k∏

i=2

P (Xi = xi|Xi−1 = xi−1)

Similarly by considering P (X1, . . . , Xn+k) and marginalizing over X1, . . . , Xn, we
obtain

P (Xn+1 = x1, . . . , Xn+k = xk) = P (Xn+1 = x1)
n+k∏

i=n+2

P (Xi = xi|Xi−1 = xi−1)

The stationarity follows by observing that two products match termwise.

(b) Note that by the Markov property, Xn is independent of X1, . . . , Xn−2 given Xn−1.
Thus,

H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1)

By stationarity, this is same as H(X2|X1). The joint distribution of (X1, X2) is

P (X1 = H,X2 = H) =
1

2
× 3

4

P (X1 = T,X2 = H) =
1

2
× 1

4

P (X1 = H,X2 = T ) =
1

2
× 1

4

P (X1 = T,X2 = T ) =
1

2
× 3

4

and the entropyH(X2|X1) is just h2(
3
4
) by direct computation. ThusH(Xn|Xn−1, . . . , X1) =

h2(3/4). Since this does not depend on n, the limit is also h2(
3
4
).
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(c) Using chain rule for entropy

1

n
H(X1, . . . , Xn) =

1

n
H(X1) +

1

n

n∑
i=2

H(Xi|Xi−1, . . . , X1)

Using the result from part (b), we get

1

n
H(X1, . . . , Xn) =

1

n
+

(n− 1)h2(3/4)

n

The limit is h2(3/4) which matches the limit from part (b). Both parts compute
the entropy rate of this process, and the proof of equality in the general case is
given in the book C&T Theorem 4.2.1.

3. Individual Sequences and a Universal Compressor.
Note: Ignore integer constraints on codeword lengths throughout this problem.
Notation: h2(p) = −p log2 p− (1− p) log2(1− p) (= binary entropy function).

Let xn be a given arbitrary binary sequence, with n0 0’s and n1 1’s (n1 = n−n0). You
are also provided a compressor Cq which takes in any arbitrary distribution q on {0, 1}
as a parameter, and encodes xn using:

L̄q(x
n) =

1

n
log

1

q(xn)

bits per symbol where q(xn) :=
∏n

i=1 q(xi).

(a) Given the sequence xn, what binary distribution q(x) will you choose as a param-
eter to the compressor Cq, so that L̄q(x

n) is minimized. Your answer (values of
q(0) and q(1)) will be expressible in terms of n, n0 and n1.

(b) When compressing any given individual sequence xn, we also need to store the
parameter distribution q(x) (required for decoding). Show that you can represent
the optimal parameter distribution q(x) from part (a) using log(n+ 1) bits. You
can assume that the decoder knows the length of the source sequence n.

(c) Show that the effective compression rate for compressing xn (in bits per source
symbol) with the distribution q from part (a) is h2(n1/n) + log(n+ 1)/n.

(d) Now suppose that we apply the scheme above to Xn sampled from an i.i.d.
Ber(p) distribution. Show that the expected compression rate approaches h2(p)
as n → ∞, i.e., the scheme is a universal compressor for i.i.d. sources.

Solution: Individual Sequences and a Universal Compressor.

(a) For q(0) = 1− q, q(1) = q, we have

L̄q =
1

n
log

1

(1− q)n0qn1
= −n0

n
log(1− q)− n1

n
log(q).

We see that L̄q is convex in q, and taking derivative w.r.t q gives q∗ = n1

n
.
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(b) By the previous part, it suffices to store n1 ∈ {0, 1, · · · , n} for full knowledge of
q(x). Hence, log(n+ 1) bits are enough (ignoring integer constraints).

(c) Simply substitute q = q∗ in the L̄q expression in part (a) solution above, and add
the contribution from part (b) (normalized by n).

L̄q +
log(n+ 1)

n
= h2

(n1

n

)
+

log(n+ 1)

n
.

(d) Let N1 denote the number of 1’s in Xn. Then we get that the expected compres-
sion rate (call it Rn) is

Rn = E
[
h2

(
N1

n

)]
+

log(n+ 1)

n

For the first term, we can use Jensen’s inequality and the concavity of entropy to
get

Rn ≤ h2

(
E
[
N1

n

])
+

log(n+ 1)

n

Now, E
[
N1

n

]
= p which gives us

Rn ≤ h2(p) +
log(n+ 1)

n

Taking the limit,
lim
n→∞

Rn ≤ h2(p)

But since the entropy h2(p) is also a lower bound on any compression scheme, we
must have

lim
n→∞

Rn = h2(p)

Thus the scheme is universal for i.i.d. sources.

4. Elias Coding.
We will construct universal codes for integers that compress any integer valued (hence,
infinite alphabet) random variable almost to its entropy.

(a) Consider the following universal compressor for natural numbers: For x ∈ N =
{1, 2, . . .}, let k(x) denote the length of its binary representation. Define the
codeword c(x) corresponding to x to be k(x) zeros followed by the binary rep-
resentation of x. Compute c(9). Show that c is a prefix code and describe a
decoding strategy for a stream of codewords.

(b) Now we define another code using the previous one. Define the codeword c′(x)
corresponding to x to be c(k(x)) followed by the binary representation of x. Com-
pute c′(9). Show that c′ is a prefix code and describe a decoding strategy for a
stream of codewords.
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(c) Let X be a random variable on natural numbers with a decreasing probability
mass function. Show that E[logX] ≤ H(X).

(d) Show that the average code length of c satisfies

E[l(c(x))] ≤ 2H(X) + 2.

(e) Show that the average code length of c′ satisfies

E[l(c′(x))] ≤ H(X) + 2 log(H(X) + 1) + 3.

Solution: The two coding schemes discussed in this question are known as Elias
γ-codes and δ-codes.

(a) We can write k(x) = ⌊log x⌋ + 1. The binary representation of x = 9 is 1001.
Therefore, k(9) = 4 and c(9) = 00001001. To show c is a prefix code, we need to
show that c(x1) is not a prefix of c(x2) for any x1, x2 ∈ N. Consider two cases.

If k(x1) = k(x2), then c(x1) and c(x2) have the same length, but c(x1) ̸= c(x2)
because x1 and x2 have different binary representations. Thus c(x1) and c(x2)
cannot be prefixes of each other. If k(x1) ̸= k(x2), suppose x1 < x2, then c(x1)
is no longer than c(x2). c(x1) begins with k(x1) zeros followed by a 1, while the
corresponding bits in c(x2) are all zero. Thus c(x1) cannot be a prefix of c(x2).

Since c is a prefix code, we can decode a stream of bits codeword by codeword. To
decode the first codeword, the decoder counts the number of 0’s before the first
1, which gives k(x). Then the decoder converts the k(x) bits starting from the
first 1 into an integer, which gives x. The decoder then repeats the same steps on
the next codeword.

(b) c(k(9)) = c(4) = 000100. Therefore, c′(9) = 001001001. Again, to show that c′ is
a prefix code, we consider two cases.

If k(x1) = k(x2), then c′(x1) and c′(x2) have the same length, but c′(x1) ̸= c′(x2)
because x1 and x2 have different binary representations. Thus c′(x1) and c′(x2)
cannot be prefixes of each other. If k(x1) ̸= k(x2), suppose x1 < x2, then c′(x1)
is no longer than c′(x2) and the first l(c(k(x1))) bits of c

′(x1) cannot be a prefix
of the first l(c(k(x2))) bits of c

′(x2) due to Part (a) (as these are codewords of c).
Thus c′(x1) cannot be a prefix of c′(x2).

We still decode codeword by codeword. For each codeword, the decoder first
decodes k(x) using the method in Part (a), then the decoder converts the k(x)
bits following c(k(x)) to integer x.

(c) If the pmf of X is decreasing, we have that p(x) ≤ 1/x ∀x ∈ N. Suppose this
is not the case, i.e., for some x ∈ N, p(x) > 1/x. Then,

∑x
i=1 p(i) > xp(x) > 1,

which is a contradiction. Therefore,

H(X) =
∑
x∈N

p(x) log
1

p(x)
≥

∑
x∈N

p(x) log x = E[logX].
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(d) Note that k(x) = ⌊log x⌋ + 1 ≤ log x + 1. Hence, E[k(X)] ≤ E[logX] + 1 ≤
H(X) + 1. For any x ∈ N, l(c(x)) = 2k(x). Therefore, the average code length
satisfies

E[l(c(X))] = 2E[k(X)] ≤ 2(H(X) + 1).

(e) For any x ∈ N, l(c′(x)) = l(c(k(x))) + k(x) ≤ 2(log(k(x)) + 1) + k(x). Therefore,
the average code length satisfies

E[l(c′(x))] ≤ 2(E[log k(X)] + 1) + E[k(X)]

≤ 2(log(E[k(X)]) + 1) + E[k(X)]

≤ 2(log(H(X) + 1) + 1) +H(X) + 1

= H(X) + 2 log(H(X) + 1) + 3

5. Extending to Shannon Codes
For a general source, let

n∗
u = ⌈log 1

p(u)
⌉ ∀u ∈ U .

Then, ∑
u∈U

2−n∗
u ≤ 1.

We want to consider a new source p∗(u) = 2−n∗
u . p∗(u) does not sum to 1 over U , but

we claim that we can add a finite number of new symbols to extend the source to
U∗ ⊇ U such that p∗(u) is dyadic over U∗. Prove this claim.

Hint: How can you reduce this problem to showing that certain rational numbers have
a finite binary representation?

Solution: Extending to Shannon Codes.
Let’s understand the probability gap we need to fill with the new symbols:

∆ = 1−
∑
u∈U

2−n∗
u .

We know that ∆ must be rational because the sum of rational numbers must result in
a rational number:

p1
q1

+
p2
q2

=
p1q2 + p2q1

q1q2
.

In fact, we are confident about an even stronger statement: the denominator of ∆ = p
q

is a power of 2:
q = max

u∈U
(2n

∗
u).

Thus, ∆ has a finite binary representation because ∆’s binary representation reduces
to the binary representation of an integer p (the numerator).

How exactly would the binary representation of ∆ look? The number of bits following
the decimal point would equal

log q = max
u∈U

(n∗
u)
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and the least significant bits would consist of the binary representation of p.

Then, it is straightforward that we can express

∆ =

log q∑
i=1

2−iαi

where αi equals the value of the i’th decimal place of the finite binary representation
of ∆. Each non-0 term in the summation corresponds to the probability assigned to a
dummy symbol in the extension of U .
Finally, we have ∑

u∈U∗

p∗(u) =
∑
u∈U

2−n∗
u +

log q∑
i=1

2−iαi = 1

where each term in the summation corresponds to the probability of a unique symbol
in U∗; this formulation satisfies the definition of a dyadic source.

6. Decoding LZ77
We encoded a binary sequence using LZ77; we now want to decode the resulting bit-
stream. We first decode it into the triplets and obtain:

(0, 0, 1) (0, 0, 0) (1, 5, 1) (8, 2, 1)
(a) (b) (c) (d)

Recall that the first entry of the triplet indicates how far back in the sequence you
must go to start decoding the phrase; the second entry of the triplet indicates how
many elements from that point should be “copied” into your newest phrase entry; and
the final entry of the tuple indicates the new element (unseen in the past sequence)
that should be added.

Specify how these triplets will now be decoded to reconstruct the original source se-
quence.

Solution: Decoding LZ77.

(a) 1
Haven’t seen anything before.

(b) 0
Haven’t seen a 0 before.

(c) 000001
Have seen a “0” 1 spot ago. Continue to see the matching characters for 5 spots.
(There is overlap with what has just been decoded.) Then see a 1.

(d) 101
Have seen a “10” 8 spots ago. See a total of 2 matching characters. Then see a 1.
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