

EE276 Homework #5

Due on Friday Feb 20, 6pm - Gradescope entry code: E6VP4X

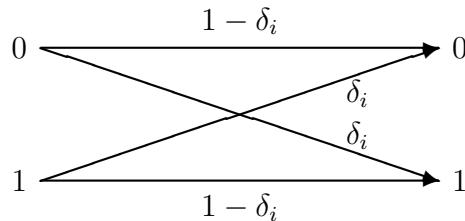
1. **Zero-error capacity.** A channel with alphabet $\{0, 1, 2, 3, 4\}$ has transition probabilities of the form

$$p(y|x) = \begin{cases} 1/2 & \text{if } y = x \pm 1 \pmod{5} \\ 0 & \text{otherwise.} \end{cases}$$

(a) Compute the capacity of this channel in bits.
 (b) The zero-error capacity of a channel is the number of bits per channel use that can be transmitted with zero probability of error. Clearly, the zero-error capacity of this pentagonal channel is at least 1 bit (transmit 0 or 1 with probability 1/2). Find a block code that shows that the zero-error capacity is greater than 1 bit. Can you estimate the exact value of the zero-error capacity?
 (Hint: Consider codes of length 2 for this channel.)

2. **Time-varying channels.**

Consider a time-varying discrete *memoryless* channel. Let Y_1, Y_2, \dots, Y_n be conditionally independent given X_1, X_2, \dots, X_n , with conditional distribution given by $p(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^n p_i(y_i|x_i)$ (where $p_i(y_i|x_i)$ is a $BSC(\delta_i)$ as shown in figure). Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$, $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$.



In this problem, we show that

$$\max_{P_{\mathbf{X}}} I(\mathbf{X}; \mathbf{Y}) = \sum_{i=1}^n (1 - h(\delta_i))$$

(a) Show that $I(\mathbf{X}; \mathbf{Y}) \leq \sum_{i=1}^n (1 - h_2(\delta_i))$ for any $P_{\mathbf{X}}$.

Hint: Use a chain of inequalities similar to the channel coding converse proof.

(b) Find a distribution over \mathbf{X} for which $I(\mathbf{X}; \mathbf{Y}) = \sum_{i=1}^n (1 - h_2(\delta_i))$.

3. **Suboptimal codes.**

Consider the Z channel, described by the probability transition matrix

$$p(y|x) = \begin{bmatrix} 1 & 0 \\ 1/2 & 1/2 \end{bmatrix}.$$

Assume that we choose a $(2^{nR}, n)$ code at random, where each codeword is a sequence of *fair* coin tosses. Find the maximum rate R such that the probability of error $P_e^{(n)}$, averaged over the randomly generated codes, tends to zero as the block length n tends to infinity.

4. **Fano's inequality.** Let $\Pr(X = i) = p_i$, $i = 1, 2, \dots, m$ and let $p_1 \geq p_2 \geq p_3 \geq \dots \geq p_m$. The minimal probability of error predictor of X is $\hat{X} = 1$, with resulting probability of error $P_e = 1 - p_1$. Maximize $H(X)$ subject to the constraint $1 - p_1 = P_e$ to find a bound on P_e in terms of H . This is Fano's inequality in the absence of conditioning.

Hint: Consider PMF $(p_2/P_e, p_3/P_e, \dots, p_m/P_e)$.

5. **Modulating Switch**

Consider the following (memoryless) channel. It has a side switch U that can be in positions **ON** and **OFF**. If U is on then the channel from X to Y is BSC_δ and if U is off then Y is $\text{Bern}(1/2)$ regardless of X . The receiving party sees Y but not U . A design constraint is that U should be in the **ON** position no more than the fraction s of all channel uses, $0 \leq s \leq 1$.

- (a) One strategy is to put U into **ON** over the first sn time units and ignore the rest of the $(1 - s)n$ readings of Y . What is the maximal rate in bits per channel use achievable with this strategy?
- (b) Can we increase the communication rate if the encoder is allowed to modulate the U switch together with the input X (while still satisfying the s -constraint on U)? (Hint 1: Consider the problem of communication across a channel from (U^n, X^n) to Y^n .) (Hint 2: Although the channel given in Hint 1 is not iid, Fano's inequality still applies and so the converse of the channel coding theorem still holds.)
- (c) Now assume nobody has access to U , which is iid $\text{Bern}(s)$ independent of X . Find the capacity.

6. **BSC with feedback.** Suppose that feedback is used for a binary symmetric channel with crossover probability parameter p . Each time a channel output is received, it becomes the next transmission: X_1 is $\text{Bern}(1/2)$, $X_2 = Y_1$, $X_3 = Y_2$, \dots , $X_n = Y_{n-1}$. Find $\lim_{n \rightarrow \infty} \frac{1}{n} I(X^n; Y^n)$. How does it compare to the capacity of this channel?