
EE276 Homework #5
Due on Friday Feb 20, 6pm - Gradescope entry code: E6VP4X

1. Zero-error capacity. A channel with alphabet {0, 1, 2, 3, 4} has transition probabil-
ities of the form

p(y|x) =
{

1/2 if y = x± 1 mod 5
0 otherwise.

(a) Compute the capacity of this channel in bits.

(b) The zero-error capacity of a channel is the number of bits per channel use that
can be transmitted with zero probability of error. Clearly, the zero-error capacity
of this pentagonal channel is at least 1 bit (transmit 0 or 1 with probability 1/2).
Find a block code that shows that the zero-error capacity is greater than 1 bit.
Can you estimate the exact value of the zero-error capacity?

(Hint: Consider codes of length 2 for this channel.)

2. Time-varying channels.
Consider a time-varying discrete memoryless channel. Let Y1, Y2, . . . , Yn be condition-
ally independent given X1, X2, . . . , Xn, with conditional distribution given by p(y|x) =∏n

i=1 pi(yi|xi) (where pi(yi|xi) is aBSC(δi) as shown in figure). LetX = (X1, X2, . . . , Xn),
Y = (Y1, Y2, . . . , Yn).
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In this problem, we show that

max
PX

I(X;Y) =
n∑

i=1

(1− h(δi))

(a) Show that I(X;Y) ≤
∑n

i=1(1− h2(δi)) for any PX.
Hint: Use a chain of inequalities similar to the channel coding converse proof.

(b) Find a distribution over X for which I(X;Y) =
∑n

i=1(1− h2(δi)).

3. Suboptimal codes.
Consider the Z channel, described by the probability transition matrix

p(y|x) =
[

1 0
1/2 1/2

]
.

Assume that we choose a (2nR, n) code at random, where each codeword is a sequence

of fair coin tosses. Find the maximum rate R such that the probability of error P
(n)
e ,

averaged over the randomly generated codes, tends to zero as the block length n tends
to infinity.
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4. Fano’s inequality. Let Pr(X = i) = pi, i = 1, 2, . . . ,m and let p1 ≥ p2 ≥ p3 ≥ · · · ≥
pm. The minimal probability of error predictor ofX is X̂ = 1, with resulting probability
of error Pe = 1 − p1. Maximize H(X) subject to the constraint 1 − p1 = Pe to find a
bound on Pe in terms of H. This is Fano’s inequality in the absence of conditioning.

Hint: Consider PMF (p2/Pe, p3/Pe, . . . , pm/Pe).

5. Modulating Switch
Consider the following (memoryless) channel. It has a side switch U that can be in
positions ON and OFF. If U is on then the channel from X to Y is BSCδ and if U is off
then Y is Bern(1/2) regardless of X. The receiving party sees Y but not U . A design
constraint is that U should be in the ON position no more than the fraction s of all
channel uses, 0 ≤ s ≤ 1.

(a) One strategy is to put U into ON over the first sn time units and ignore the rest
of the (1 − s)n readings of Y . What is the maximal rate in bits per channel use
achievable with this strategy?

(b) Can we increase the communication rate if the encoder is allowed to modulate the
U switch together with the input X (while still satisfying the s-constraint on U)?
(Hint 1: Consider the problem of communication across a channel from (Un, Xn)
to Y n.) (Hint 2: Although the channel given in Hint 1 is not iid, Fano’s inequality
still applies and so the converse of the channel coding theorem still holds.)

(c) Now assume nobody has access to U , which is iid Bern(s) independent of X. Find
the capacity.

6. BSC with feedback. Suppose that feedback is used for a binary symmetric channel
with crossover probability parameter p. Each time a channel output is received, it
becomes the next transmission: X1 is Bern(1/2), X2 = Y1, X3 = Y2, . . . , Xn = Yn−1.

Find limn→∞
1
n
I(Xn;Y n). How does it compare to the capacity of this channel?
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