1. *Shot noise channel.* Consider an additive noise channel with input signal $X \sim U(0, 1)$ and output signal $Y = X + Z$, where the noise $Z|X = x \sim \mathcal{N}(0, ax)$, for some constant $a > 0$, i.e., the noise variance is proportional to the signal. Observing Y, find the MMSE linear estimate of X. Your answer should be in terms of only a and Y.

Solution (10 points)

To find the MMSE linear estimate we need to find the means, variances and covariance of the signal and observation:

- $E(X) = \frac{1}{2}$
- $E(Y) = E(X) + E(Z)$

 $= \frac{1}{2} + E_X(E(Z|X)) = \frac{1}{2} + 0$
- $Var(X) = \frac{1}{12}$
- $E(Y^2) = E(X^2) + 2E(XZ) + E(Z^2)$

 $= \frac{1}{3} + 2E_X(XE(Z|X)) + E_X(E(Z^2|X))$

 $= \frac{1}{3} + 0 + E_X(aX) = \frac{1}{3} + \frac{a}{2}$
- $Var(Y) = \frac{1}{3} + \frac{a}{2} - \frac{1}{4} = \frac{1}{12} + \frac{a}{2}$
- $E(XY) = E(X^2) + E_X(XE(Z|X)) = \frac{1}{3} + 0$
- $Cov(X, Y) = \frac{1}{12}$

Thus

$$\hat{X} = \frac{Cov(X, Y)}{Var(Y)}(Y - E(Y)) + E(X)$$

$$= \frac{1}{1 + 6a} \left(Y - \frac{1}{2} \right) + \frac{1}{2}$$

$$= \frac{Y + 3a}{1 + 6a}.$$

2. *Additive-noise channel with path gain.* Consider the output Y of an additive-noise channel with path gain, where X and Z are zero mean and uncorrelated, and a and b are constants. Find the MMSE linear estimate of X given Y and its MSE in terms only of σ_X, σ_Z, a and b.

Solution

To find the MMSE linear estimate we need to find the means, variances and covariance of the signal and observation:

- $E(X) = \frac{1}{2}$
- $E(Y) = E(X) + E(Z)$

 $= \frac{1}{2} + E_X(E(Z|X)) = \frac{1}{2} + 0$
- $Var(X) = \frac{1}{12}$
- $E(Y^2) = E(X^2) + 2E(XZ) + E(Z^2)$

 $= \frac{1}{3} + 2E_X(XE(Z|X)) + E_X(E(Z^2|X))$

 $= \frac{1}{3} + 0 + E_X(aX) = \frac{1}{3} + \frac{a}{2}$
- $Var(Y) = \frac{1}{3} + \frac{a}{2} - \frac{1}{4} = \frac{1}{12} + \frac{a}{2}$
- $E(XY) = E(X^2) + E_X(XE(Z|X)) = \frac{1}{3} + 0$
- $Cov(X, Y) = \frac{1}{12}$

Thus

$$\hat{X} = \frac{Cov(X, Y)}{Var(Y)}(Y - E(Y)) + E(X)$$

$$= \frac{1}{1 + 6a} \left(Y - \frac{1}{2} \right) + \frac{1}{2}$$

$$= \frac{Y + 3a}{1 + 6a}.$$
Solution (10 points)

First we find the mean and variance of Y and its covariance with X. In the following we use the notation $\sigma^2_X = P$ and $\sigma^2_Z = N$.

\[
E(Y) = E(abX + bZ) = abE(X) + bE(Z) = 0
\]
\[
\text{Var} = E(abX + bZ)^2 - (E(abX + bZ))^2
\]
\[
= E(a^2b^2X^2 + 2ab^2XZ + b^2Z^2) - E(Y)^2
\]
\[
= a^2b^2 E(X^2) + 2ab^2 E(X) E(Z) + b^2 E(Z^2) - E(Y)^2
\]
\[
= a^2b^2 P + 0 + b^2 N - 0
\]
\[
= a^2b^2 P + b^2 N
\]
\[
\text{Cov}(X,Y) = E[(X - E(X))(Y - E(Y))]
\]
\[
= E(XY)
\]
\[
= E[X(abX + bZ)]
\]
\[
= abE(X^2) + bE(XZ)
\]
\[
= abP + bE(X) E(Z)
\]
\[
= abP
\]

The MMSE linear estimate of X given Y is given by

\[
\hat{X} = \frac{\text{Cov}(X,Y)}{\sigma_Y^2}(Y - E(Y)) + E(X)
\]
\[
= \frac{aP}{a^2b^2 P + b^2 N}(Y - E(Y)) + E(X)
\]
\[
= \frac{aP}{b(a^2P + N)}Y.
\]

The MSE of the linear estimate is the minimum MMSE:

\[
\text{MMSE} = \sigma_X^2 - \frac{\text{Cov}^2(X,Y)}{\sigma_Y^2}
\]
\[
= P - \frac{a^2b^2 P^2}{a^2b^2 P + b^2 N}
\]
\[
= \frac{a^2P^2 + PN - a^2P^2}{a^2P + N}
\]
\[
= \frac{PN}{a^2P + N}
\]
3. **Camera measurement.** The measurement from a camera can be expressed as \(Y = AX + Z \), where \(X \) is the object position with mean \(\mu \) and variance \(\sigma_X^2 \), \(A \) is the occlusion indicator function and is equal to 1 (if the camera can see the object) with probability \(p \), and 0 (if the camera cannot see the object) with probability \((1 - p) \), and \(Z \) is the measurement error with mean 0 and variance \(\sigma_Z^2 \). Assume that \(X, A, \) and \(Z \) are independent. Find the best linear MSE estimate of \(X \) given the camera measurement \(Y \). Your answer should be in terms of only \(\mu, \sigma_X^2, \sigma_Z^2, \) and \(p \).

Solution (10 points)

The MMSE linear estimate of \(X \) given \(Y \) is given by

\[
\hat{X} = \frac{\text{Cov}(X,Y)}{\sigma_Y^2}(Y - E(Y)) + E(X).
\]

Now,

\[
E(X) = \mu
\]
\[
E(Y) = E(AX + Z)
\]
\[
= E(A)E(X) + E(Z)
\]
\[
= p\mu
\]
\[
\text{Var}(Y) = E[(AX + Z - p\mu)^2]
\]
\[
= E[(AX - p\mu)^2]
\]
\[
= E[(AX - p\mu)^2] + \sigma_Z^2
\]
\[
= E[(AX)^2] - p^2\mu^2 + \sigma_Z^2
\]
\[
= E(A^2) E(X^2) - p^2\mu^2 + \sigma_Z^2
\]
\[
= p(\sigma_X^2 + \mu^2) - p^2\mu^2 + \sigma_Z^2
\]
\[
= p\sigma_X^2 + p(1 - p)\mu^2 + \sigma_Z^2
\]
\[
\text{Cov}(X,Y) = E[(X - \mu)(AX + Z - p\mu)]
\]
\[
= E[(X - \mu)(AX - p\mu)]
\]
\[
= E(A)E[(X - \mu)X]
\]
\[
= p\sigma_X^2.
\]

Substituting, we obtain

\[
\hat{X} = \frac{p\sigma_X^2}{p\sigma_X^2 + p(1 - p)\mu^2 + \sigma_Z^2}(Y - p\mu) + \mu.
\]

4. **Jointly Gaussian random variables.** Let \(X \) and \(Y \) be jointly Gaussian random variables with mean 0 and covariance matrix

\[
\begin{bmatrix}
\sigma_X^2 & \sigma_{XY}\rho_{X,Y} \\
\sigma_{XY}\rho_{X,Y} & \sigma_Y^2
\end{bmatrix}
\]

a. What is the pdf of \(E(X \mid Y) \)?

b. What is the minimum MSE estimate of \(Y^2 \) given \(X \)?

Your answers should be in terms of \(\sigma_X, \sigma_Y, \rho_{X,Y}, \) and the random variables \(X \) and \(Y \).
Solution (10 points)

a. Since X and Y are zero-mean jointly Gaussian,
\[
E(X \mid Y) = \frac{\sigma_X \rho_{X,Y}}{\sigma_Y} Y.
\]

But $Y \sim \mathcal{N}(0, \sigma_Y^2)$. Therefore
\[
E(X \mid Y) \sim \mathcal{N}(0, \sigma_X^2 \rho_{X,Y}^2).
\]

b. The best MSE estimate of Y^2 given X is $E(Y^2 \mid X)$. We have seen that
\[
Y \mid \{X = x\} \sim \mathcal{N}\left(\frac{\sigma_Y \rho_{X,Y}}{\sigma_X} x, \sigma_Y^2 (1 - \rho_{X,Y}^2)\right).
\]

Therefore
\[
E(Y^2 \mid X) = \sigma_Y^2 (1 - \rho_{X,Y}^2) + \left(\frac{\sigma_Y \rho_{X,Y}}{\sigma_X} X\right)^2
= \sigma_Y^2 \left(1 - \rho_{X,Y}^2 \left(1 - \frac{X^2}{\sigma_X^2}\right)\right).
\]

5. *Estimation vs. detection.* Signal X and noise Z are independent random variables, where
\[
X = \begin{cases}
+1 & \text{with probability } \frac{1}{2} \\
-1 & \text{with probability } \frac{1}{2},
\end{cases}
\]
and $Z \sim \mathcal{U}[-2, +2]$. Their sum $Y = X + Z$ is observed.

a. Find the minimum MSE estimate of X given Y and the corresponding mean square error. What is the probability of error of this estimate?

b. Suppose that we decide whether $X = +1$ or $X = -1$ using a decoder that minimizes the probability of error. Find this optimal decoder and its probability of error. Compare the optimal decoder’s MSE to the minimum MSE.

Solution (15 points)

a. We can easily find the piecewise constant density of Y
\[
f_Y(y) = \begin{cases}
\frac{1}{4} & |y| \leq 1 \\
\frac{1}{8} & 1 < |y| \leq 3 \\
0 & \text{otherwise}
\end{cases}
\]
The conditional probabilities of \(X \) given \(Y \) are
\[
P\{X = +1|Y = y\} = \begin{cases}
0 & -3 \leq y < -1 \\
\frac{1}{2} & -1 \leq y \leq +1 \\
1 & +1 < y \leq +3
\end{cases}
\]
\[
P\{X = -1|Y = y\} = \begin{cases}
1 & -3 \leq y < -1 \\
\frac{1}{2} & -1 \leq y \leq +1 \\
0 & +1 < y \leq +3
\end{cases}
\]

Thus the best MSE estimate is
\[
g(Y) = E(X|Y) = \begin{cases}
-1 & -3 \leq Y < -1 \\
0 & -1 \leq Y \leq +1 \\
+1 & +1 < Y \leq +3
\end{cases}
\]

The minimum mean square error is
\[
E_Y(\text{Var}(X|Y)) = E_Y(E(X^2|Y) - (E(X|Y))^2) = E(1 - g(Y)^2)
\]
\[
= 1 - E(g(Y)^2) = 1 - \int_{-\infty}^{\infty} g(y)^2 f_Y(y) \, dy \\
= 1 - \left(\int_{-3}^{-1} \frac{1}{8} \, dy + \int_{-1}^{1} \frac{1}{4} \, dy + \int_{1}^{+3} \frac{1}{8} \, dy \right) \\
= 1 - \int_{-3}^{-1} \frac{1}{8} \, dy - \int_{1}^{3} \frac{1}{8} \, dy = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}.
\]

b. The optimal decoder is given by the MAP rule. The \textit{a posteriori} pmf of \(X \) was found in part (a). Thus the MAP rule reduces to
\[
\hat{\Theta}(y) = \begin{cases}
-1 & -3 \leq y \leq -1 \\
\pm 1 & -1 < y \leq +1 \\
+1 & +1 < y \leq +3
\end{cases}
\]

Since either value can be chosen for \(d(y) \) in the center range of \(Y \), a \textit{symmetrical} decoder is sufficient, i.e.,
\[
\hat{\Theta}(y) = \begin{cases}
-1 & y < 0 \\
+1 & y \geq 0
\end{cases}
\]

The probability of decoding error is
\[
P\{\hat{\Theta}(Y) \neq X\} = P\{X = -1, Y \geq 0\} + P\{X = 1, Y < 0\} \\
= P\{X = -1|Y \geq 0\} P\{Y \geq 0\} + P\{X = 1|Y < 0\} P\{Y < 0\} \\
= \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{4}.
\]

If we use the decoder (detector) as an estimator, its MSE is
\[
E\left((\hat{\Theta}(Y) - X)^2 \right) = \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 2^2 = 1.
\]

This MSE is twice that of the minimum mean square error estimator.
6. Jointly Gaussian random variables, redux. Consider the following joint pdf for X and Y:

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{3/4}} e^{-\frac{1}{2} \left(\frac{1}{3} x^2 + \frac{16}{3} y^2 + \frac{8}{3} xy - 8x - 16y + 16 \right)}$$

a. Find $E(X)$, $E(Y)$, $\text{Var}(X)$, $\text{Var}(Y)$, and $\text{Cov}(X,Y)$.

b. Find the minimum MSE estimate of X given Y and the corresponding MSE.

Solution (10 points)

a. We can write the joint pdf of any jointly Gaussian X and Y as

$$f_{X,Y}(x,y) = \frac{\exp\left(-\left(a(x-\mu_X)^2 + b(y-\mu_Y)^2 + c(x-\mu_X)(y-\mu_Y) \right) \right)}{2\pi \sigma_X \sigma_Y \sqrt{1-\rho_{X,Y}^2}}$$

where

$$a = \frac{1}{2(1-\rho_{X,Y}^2)\sigma_X^2}, \quad b = \frac{1}{2(1-\rho_{X,Y}^2)\sigma_Y^2}, \quad c = \frac{-2\rho_{X,Y}}{2(1-\rho_{X,Y}^2)\sigma_X \sigma_Y}.$$

By inspection of the given $f_{X,Y}(x,y)$ we find that

$$a = \frac{2}{3}, \quad b = \frac{8}{3}, \quad c = \frac{4}{3}.$$

We can easily solve the above three equations for the unknowns:

$$\rho_{X,Y} = \frac{c}{2\sqrt{ab}} = -\frac{1}{2}$$

$$\sigma_X^2 = \frac{1}{2(1-\rho_{X,Y}^2)a} = 1$$

$$\sigma_Y^2 = \frac{1}{2(1-\rho_{X,Y}^2)b} = \frac{1}{4}$$

To find μ_X and μ_Y, we solve a system of two linear equations:

$$2a\mu_X x + c\mu_Y x = 4x$$

$$2b\mu_X x + c\mu_Y y = 8y$$

obtaining $\mu_X = 2$, $\mu_Y = 1$ and $\text{Cov}(X,Y) = \rho_{X,Y} \sigma_X \sigma_Y = -\frac{1}{4}$.

b. Since X and Y are jointly Gaussian random variables, the minimum MSE estimate of X given Y is linear:

$$E(X|Y) = \frac{\rho_{X,Y} \sigma_X}{\sigma_Y} (Y - \mu_Y) + \mu_X = -(Y - 1) + 2 = 3 - Y$$

$$\text{MMSE} = \text{Var}(X|Y) = (1 - \rho_{X,Y}^2)\sigma_X^2 = \frac{3}{4}$$

7. Conditional Independence does not imply Independence. In class, we saw an example in which two independent, identically distributed random variables conditioned on a third random variable were no longer independent. Here, we examine an example of the opposite case: is it possible for conditionally independent random variables to be not independent?
Suppose $X_3 \sim U[0, 1]$, given $X_3, X_1, X_2 \overset{i.i.d.}{\sim} \text{Bern}(X_3)$. Show that X_1, X_2 are not independent. Work out the joint distribution P_{X_1, X_2}.

Hint: the Beta function is $B(x, y) = \int_0^1 t^{x-1} (1 - t)^{y-1} dt$.

Solution (10 points)

To check independence, we compare the marginal joint probability P_{X_1, X_2} with marginal probabilities P_{X_1} and P_{X_2}.

The marginal joint distribution P_{X_1, X_2} is computed as follows by marginalizing over X_3:

\[
P_{X_1, X_2} = \int_{x_3} P_{X_3}(x_3) x_3^{x_1}(1 - x_3)^{1-x_1} x_3^{x_2}(1 - x_3)^{1-x_2} dx_3
\]

\[
= \int_0^1 x_3^{x_1+x_2}(1 - x_3)^{2-x_1-x_2} dx_3
\]

\[
= B(x_1 + x_2 + 1, 3 - x_1 - x_2).
\]

The marginal distribution $P_{X_1}(x_1)$ is computed as follows:

\[
P_{X_1}(x_1) = \int_0^1 P_{X_3}(x_3) x_3^{x_1}(1 - x_3)^{1-x_1} dx_3
\]

\[
= B(x_1 + 1, 2 - x_1).
\]

Similarly, $P_{X_2}(x_2) = B(X_2 + 1, 2 - x_1)$. Since in general $B(x_1 + x_2 + 1, 3 - x_1 - x_2) \neq B(x_1 + 1, 2 - x_1)B(X_2 + 1, 2 - x_1)$, which can be shown using the Gamma function, we know that X_1, X_2 are not independent.

The following problems are optional and need not be turned in for grading.

1. **Independence vs. Conditional Independence** Give an example of random variables X, Y, Z where $f_{X,Z}(x, z) = f_X(x) f_Z(z)$ but $f_{X,Z|Y}(x, z|y) \neq f_{X|Y}(x|y) f_{Z|Y}(z|y)$ i.e. independence does not imply conditional independence.

 Solution

 One solution is let $X, Z \overset{iid}{\sim} \text{Bern}(1/2)$ and $Y = X + Z$.

2. **Sum and difference.** Let X and Y be two random variables, and define $U = X - Y$ and $V = X + Y$. Find the minimum MSE linear estimate of V given U as a function of the random variables and $E(X)$, $E(Y)$, σ_X, σ_Y, $\rho_{X,Y}$, where $\sigma_X = \sqrt{\text{Var}(X)}$, $\rho_{X,Y} = \text{corr}(X,Y)$.
Solution

First we calculate the first and second moments of U and V.

\[
E(V) = E(X) + E(Y)
\]
\[
E(U) = E(X) - E(Y)
\]
\[
\sigma_V^2 = \sigma_X^2 + \sigma_Y^2 + 2\rho_{X,Y}\sigma_X\sigma_Y
\]
\[
\sigma_U^2 = \sigma_X^2 + \sigma_Y^2 - 2\rho_{X,Y}\sigma_X\sigma_Y
\]
\[
\text{Cov}(V,U) = \sigma_X^2 - \sigma_Y^2.
\]

The minimum MSE linear estimate of V given U is given by

\[
\hat{V} = \frac{\text{Cov}(V,U)}{\sigma_U^2}(U - E(U)) + E(V).
\]

Plugging in the moments of U and V gives the answer.

\[
\hat{V} = \frac{\sigma_X^2 - \sigma_Y^2}{\sigma_X^2 + \sigma_Y^2 - 2\rho_{X,Y}\sigma_X\sigma_Y}(U - (E(X) - E(Y)) + (E(X) + E(Y))
\]

Note that U and V are positively correlated if $\sigma_X^2 > \sigma_Y^2$, negatively correlated if $\sigma_X^2 < \sigma_Y^2$, and uncorrelated if $\sigma_X^2 = \sigma_Y^2$.

3. Covariance matrices. Which of the following matrices can be a covariance matrix? Justify your answer. Either construct a random vector X with the given covariance matrix as a function of the i.i.d. zero mean unit variance random variables Z_1, Z_2, Z_3, or establish a contradiction as was done in lecture.

\[
\begin{pmatrix}
1 & 2 \\
0 & 2
\end{pmatrix} \quad \begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix} \quad \begin{pmatrix}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{pmatrix} \quad \begin{pmatrix}
1 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 3
\end{pmatrix}
\]

Solution

a. No: not symmetric.

b. Yes: covariance matrix of $X_1 = Z_1 + Z_2$ and $X_2 = Z_1 + Z_3$.

c. Yes: covariance matrix of $X_1 = Z_1$, $X_2 = Z_1 + Z_2$, and $X_3 = Z_1 + Z_2 + Z_3$.

d. No: several justifications.
 - $\sigma_{23}^2 = 9 > \sigma_{22}\sigma_{33} = 6$, which contradicts the Schwarz inequality.
 - The matrix is not nonnegative definite since the determinant is -2.
 - One of the eigenvalues is negative ($\lambda_1 = -0.8056$).