1. Applications of cross-correlation. Estimating the cross-correlation between two WSS random processes has several real-world signal processing applications. In this problem we illustrate two such applications.

a. Finding the impulse response of an LTI system. To find the impulse response $h(t)$ of an LTI system (e.g. a concert hall), i.e. to identify the system, white noise $X(t)$, $-\infty < t < \infty$, is applied to its input and the output $Y(t)$ is measured. Given the input and the output sample functions, the cross-correlation $R_{YX}(\tau)$ is estimated. Show how $R_{YX}(\tau)$ can be used to find $h(t)$.

b. Finding time of flight. Finding the distance to an object is often done by sending a signal and measuring the time of flight, i.e. the time it takes for the signal to return (assuming speed of signal, e.g. light, is known). Let $X(t)$ be the signal sent and $Y(t) = X(t-\delta) + Z(t)$ be the signal received, where δ is the unknown time of flight. Assume that $X(t)$ and $Z(t)$ (the sensor noise) are uncorrelated zero mean WSS processes. The estimated cross-correlation function of $Y(t)$ and $X(t)$, $R_{YX}(t)$ is shown in Figure 1. Find the time of flight δ.

Figure 1: Cross-correlation function for problem 1b

Solution (10 points)

a. Since white noise has a flat PSD, the crosspower spectral density of the input $X(t)$ and the output $Y(t)$ is just the transfer function of the system scaled by the PSD of the white noise.

\[S_{YX}(f) = H(f)S_X(f) = H(f) \frac{N_0}{2} \]

\[R_{YX}(\tau) = \mathcal{F}^{-1}(S_{YX}(f)) = \frac{N_0}{2} h(\tau). \]
Thus to estimate the impulse response of a linear time-invariant system, we apply white noise to its input, estimate the cross-correlation function of its input and output, and scale by $2/N_0$.

b. The cross-correlation function of $Y(t)$ and $X(t)$ is
\[
R_{YX}(\tau) = E[Y(t+\tau)X(t)] \\
= E[(X(t-\delta+\tau) + Z(t+\tau))X(t)] \\
= R_X(\tau-\delta).
\]

Since the maximum of $|R_X(\alpha)|$ is achieved for $\alpha = 0$, by inspection of the given R_{XY} we see that $5 - \delta = 0$. Thus $\delta = 5$.

2. **Switched RC circuit.** Consider the circuit in Figure 2. The voltage source $V(t)$ models the thermal noise in the resistor. At time $t = 0$, the switch is closed. Compute the average power $E[V_o^2(t)]$ as a function of time t.

Lecture Notes 8 slides 15 and 16 show the computation of the average output noise power of an RC circuit. Compare that result to your answer in this problem.

Solution (10 points)

Let us lump the voltage source and the switch together as a (non-stationary) source that drives the linear time-invariant RC system. The autocorrelation function of this source is
\[
R_V(t_1, t_2) = \begin{cases}
2kT R \delta(t_1 - t_2) & \text{if } t_1, t_2 \geq 0 \\
0 & \text{otherwise.}
\end{cases}
\]

The impulse response of the LTI system composed of the resistor and the capacitor is
\[
h(t) = \frac{1}{RC} e^{-t/(RC)} u(t).
\]

The output random process is given by the convolution
\[
V_o(t) = \int_{-\infty}^{\infty} h(\tau)V(t - \tau)d\tau.
\]
We can compute the output power as a function of t as

$$E[V_o^2(t)] = E \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)V(t-\tau_1)V(t-\tau_2)d\tau_2d\tau_1 \right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_V(t-\tau_1, t-\tau_2)d\tau_2d\tau_1$$

$$= 2kTR \int_{-\infty}^{t} h(\tau_1)h(\tau_1)d\tau_1$$

$$= 2kTR \int_{-\infty}^{t} e^{-2\tau_1/(RC)}d\tau_1$$

$$= \frac{2kT}{RC^2}\left[\frac{RC}{2} - \frac{e^{-2t/(RC)}}{2}\right]_0$$

$$= \frac{kT}{C}(1 - e^{-2t/(RC)}).$$

Note that as $t \to \infty$, the average output power converges to kT/C.

3. **LTI system with WSS process input.** Let $Y(t) = h(t) * X(t)$ and $Z(t) = X(t) - Y(t)$, as shown in Figure 3.

a. Find $S_Z(f)$.

b. Find $E[Z^2(t)]$.

Your answers should be in terms of $S_X(f)$ and the transfer function $H(f) = \mathcal{F}\{h(t)\}$.

![Figure 3: Linear time-invariant system](image)

Solution (10 points)

a. To find $S_Z(f)$, we start with

$$Z(t) = (\delta(t) - h(t)) * X(t).$$

Taking the power spectral density on both sides, we arrive at

$$S_Z(f) = |1 - H(f)|^2S_X(f).$$

b. The average power of $Z(t)$ is the area under $S_Z(f)$,

$$E[Z^2(t)] = \int_{-\infty}^{\infty} |1 - H(f)|^2S_X(f)df.$$
4. **Linear system with feedback.** Given the system in Figure 4 where $X(t)$ and $Z(t)$ are independent zero-mean WSS random processes, and $h(t)$ is the impulse response of a linear time invariant system, find the power spectral density of $Y(t)$.

![Figure 4: Linear system with feedback](image)

Solution (10 points)

It follows from the block diagram that

$$(X(t) - Y(t)) * h(t) + Z(t) = Y(t).$$

Sorting terms, this is equivalent to

$$X(t) * h(t) + Z(t) = (\delta(t) + h(t)) * Y(t).$$

Taking the power spectral density on both sides, this implies

$$S_X(f)|H(f)|^2 + S_Z(f) = |1 + H(f)|^2 S_Y(f),$$

where we have used the fact that $X(t)$ and $Z(t)$ are independent, and the power spectral density of the sum is thus the sum of the power spectral densities. Finally, we conclude that

$$S_Y(f) = \frac{|H(f)|^2}{|1 + H(f)|^2} S_X(f) + \frac{1}{|1 + H(f)|^2} S_Z(f).$$

5. **Discrete-time LTI system with white noise input.** Let $\{X_n : -\infty < n < \infty\}$ be a discrete-time white noise process, i.e., $E[X_n] = 0$ and

$$R_X(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise.} \end{cases}$$

The process is filtered using a linear time-invariant system with impulse response

$$h(n) = \begin{cases} \alpha & n = 0 \\ \beta & n = 1 \\ 0 & \text{otherwise.} \end{cases}$$
Find α and β such that the output process Y_n has

\[
R_Y(n) = \begin{cases}
2 & n = 0 \\
1 & |n| = 1 \\
0 & \text{otherwise}.
\end{cases}
\]

Solution (10 points)

We are given that $R_X(n)$ is a discrete-time unit impulse. Therefore

\[
R_Y(n) = h(n) * R_X(n) * h(-n) = h(n) * h(-n).
\]

The impulse response $h(n)$ is the sequence $(a, \beta, 0, 0, \ldots)$. The convolution with $h(-n)$ has only finitely many nonzero terms.

\[
\begin{align*}
R_Y(0) &= 2 = h(0) * h(0) = \alpha^2 + \beta^2 \\
R_Y(+1) &= 1 = h(1) * h(-1) = \alpha \beta \\
R_Y(-1) &= 1 = R_Y(1)
\end{align*}
\]

This pair of equations has two solutions: $\alpha = +1$ and $\beta = +1$ or $\alpha = -1$ and $\beta = -1$.

6. **Narrow-band process over additive white noise channel.** Let the received signal over an additive noise channel be $Y(t) = X(t) + Z(t)$. The input signal $X(t)$ is a WSS process with zero mean and autocorrelation function $R_X(\tau) = P \cos(10\pi \tau) \cdot \text{sinc}(\tau)$. The noise $Z(t)$ is a white noise process with power spectral density $S_Z(f) = N/2$, $-\infty < f < \infty$. The signal and noise processes are uncorrelated.

a. Find and sketch the transfer function of the best infinite smoothing filter for $X(t)$ given $Y(\tau)$, $-\infty < \tau < \infty$.

b. Find the MSE of the best infinite smoothing filter.

Your answers should be in terms of only P and N.

Solution (15 points)

a. We first find $S_{XY}(f)$ and $S_Y(f)$. Since $X(t)$ and $Z(t)$ are zero mean and uncorrelated,

\[
\begin{align*}
R_{XY}(\tau) &= R_X(\tau), \\
S_{XY}(f) &= \frac{P}{2} (\text{Rect}(f - 5) + \text{Rect}(f + 5)), \\
R_Y(\tau) &= R_X(\tau) + R_Z(\tau), \\
S_Y(f) &= \frac{P}{2} (\text{Rect}(f - 5) + \text{Rect}(f + 5)) + \frac{N}{2}.
\end{align*}
\]
The transfer function of the best infinite smoothing filter is

\[H(f) = \frac{S_{XY}(f)}{S_Y(f)} \]

\[= \frac{P}{N + P} (\text{Rect}(f - 5) + \text{Rect}(f + 5)). \]

This is sketched in Figure 5.

![Figure 5: Transfer function \(H(f) \)](image)

b. The MSE is given by

\[\text{MSE} = \int_{-\infty}^{\infty} \left(S_X(f) - \frac{|S_{XY}(f)|^2}{S_Y(f)} \right) df \]

\[= 2 \int_{4.5}^{5.5} \left(\frac{P}{2} - \frac{(P/2)^2}{N/2 + P/2} \right) df \]

\[= \frac{NP}{P + N} \]