
Lecture Notes 7

Stationary Random Processes

• Strict-Sense and Wide-Sense Stationarity

• Autocorrelation Function of a Stationary Process

• Power Spectral Density

• Continuity and Integration of Random Processes

• Stationary Ergodic Random Processes
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Stationary Random Processes

• Stationarity refers to time invariance of some, or all, of the statistics of a
random process, such as mean, autocorrelation, n-th-order distribution

• We define two types of stationarity: strict sense (SSS) and wide sense (WSS)

• A random process X(t) (or Xn) is said to be SSS if all its finite order
distributions are time invariant, i.e., the joint cdfs (pdfs, pmfs) of

X(t1),X(t2), . . . , X(tk) and X(t1 + τ), X(t2 + τ), . . . ,X(tk + τ)

are the same for all k, all t1, t2, . . . , tk, and all time shifts τ

• So for a SSS process, the first-order distribution is independent of t, and the
second-order distribution— the distribution of any two samples X(t1) and
X(t2)—depends only on τ = t2 − t1

To see this, note that from the definition of stationarity, for any t, the joint
distribution of X(t1) and X(t2) is the same as the joint distribution of
X(t1 + (t− t1)) = X(t) and X(t2 + (t− t1)) = X(t+ (t2 − t1))

EE 278B: Stationary Random Processes 7 – 2



• Example: The random phase signal X(t) = α cos(ωt+Θ) where Θ ∈ U[0, 2π]
is SSS

◦ We already know that the first order pdf is

fX(t)(x) =
1

πα
√

1− (x/α)2
, −α < x < +α

which is independent of t, and is therefore stationary

◦ To find the second order pdf, note that if we are given the value of X(t) at
one point, say t1, there are (at most) two possible sample functions:

x1

x21

x22

t
t1 t2
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The second order pdf can thus be written as

fX(t1),X(t2)(x1, x2) = fX(t1)(x1)fX(t2)|X(t1)(x2|x1)

= fX(t1)(x1)
(

1
2δ(x2 − x21) +

1
2δ(x2 − x22)

)

,

which depends only on t2 − t1, and thus the second order pdf is stationary

◦ Now if we know that X(t1) = x1 and X(t2) = x2, the sample path is totally
determined (except when x1 = x2 = 0, where two paths may be possible),
and thus all n-th order pdfs are stationary

• IID processes are SSS

• Random walk and Poisson processes are not SSS

• The Gauss-Markov process (as we defined it) is not SSS. However, if we set X1

to the steady state distribution of Xn, it becomes SSS (see homework exercise)
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Wide-Sense Stationary Random Processes

• A random process X(t) is said to be wide-sense stationary (WSS) if its mean
and autocorrelation functions are time invariant, i.e.,

◦ E(X(t)) = µ, independent of t

◦ RX(t1, t2) is a function only of the time difference t2 − t1

◦ E[X(t)2] < ∞ (technical condition)

• Since RX(t1, t2) = RX(t2, t1), for any wide sense stationary process X(t),
RX(t1, t2) is a function only of |t2 − t1|

• Clearly SSS ⇒ WSS. The converse is not necessarily true
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• Example: Let

X(t) =



























+sin t with probability 1
4

− sin t with probability 1
4

+cos t with probability 1
4

− cos t with probability 1
4

◦ E(X(t)) = 0 and RX(t1, t2) =
1
2 cos(t2 − t1), thus X(t) is WSS

◦ But X(0) and X(π4) do not have the same pmf (different ranges), so the first
order pmf is not stationary, and the process is not SSS

• For Gaussian random processes, WSS ⇒ SSS, since the process is completely
specified by its mean and autocorrelation functions

• Random walk is not WSS, since RX(n1, n2) = min{n1, n2} is not time
invariant; similarly Poisson process is not WSS
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Autocorrelation Function of WSS Processes

• Let X(t) be a WSS process. Relabel RX(t1, t2) as RX(τ) where τ = t1 − t2

1. RX(τ) is real and even, i.e., RX(τ) = RX(−τ) for every τ

2. |RX(τ)| ≤ RX(0) = E[X2(t)], the “average power” of X(t)

This can be shown as follows. For every t,

(RX(τ))2 = [E(X(t)X(t+ τ))]
2

≤ E[X2(t)] E[X2(t+ τ)] by Schwarz inequality

= (RX(0))2 by stationarity

3. If RX(T ) = RX(0) for some T 6= 0, then RX(τ) is periodic with period T and
so is X(t) (with probability 1) !! That is,

RX(τ) = RX(τ + T ), X(t) = X(t+ T ) w.p.1 for every τ
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• Example: The autocorrelation function for the periodic signal with random

phase X(t) = α cos(ωt+Θ) is RX(τ) =
α2

2
cosωτ (also periodic)

• To prove property 3, we again use the Schwarz inequality: For every τ ,
[

RX(τ)−RX(τ + T )
]2

=
[

E (X(t)(X(t+ τ)−X(t+ τ + T )))
]2

≤ E[X2(t)] E
[

(X(t+ τ)−X(t+ τ + T ))2
]

= RX(0)(2RX(0)− 2RX(T ))

= RX(0)(2RX(0)− 2RX(0)) = 0

Thus RX(τ) = RX(τ + T ) for all τ , i.e., RX(τ) is periodic with period T

• The above properties of RX(τ) are necessary but not sufficient for a function to
qualify as an autocorrelation function for a WSS process
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• The necessary and sufficient conditions for a function to be an autocorrelation
function for a WSS process is that it be real, even, and nonnegative definite

By nonnegative definite we mean that for any n, any t1, t2, . . . , tn and any real
vector a = (a1, . . . , an),

n
∑

i=1

n
∑

j=1

aiajR(ti − tj) ≥ 0

To see why this is necessary, recall that the correlation matrix for a random
vector must be nonnegative definite, so if we take a set of n samples from the
WSS random process, their correlation matrix must be nonnegative definite

The condition is sufficient since such an R(τ) can specify a zero mean
stationary Gaussian random process

• The nonnegative definite condition may be difficult to verify directly. It turns
out, however, to be equivalent to the condition that the Fourier transform
of RX(τ), which is called the power spectral density SX(f), is nonnegative for
all frequencies f
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Which Functions Can Be an RX(τ)?

1. 2.

e−ατ

τ

e−α|τ |

τ

3. 4.

τ

sinc τ

τ
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Which Functions can be an RX(τ)?

5. 6.

τ
T
2

T

1

−1

2−|n|

n
−4−3−2−1 1 2 3 4

7. 8.

τ

1

−T T
τ

1
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Interpretation of Autocorrelation Function

• Let X(t) be WSS with zero mean. If RX(τ) drops quickly with τ , this means
that samples become uncorrelated quickly as we increase τ . Conversely, if
RX(τ) drops slowly with τ , samples are highly correlated

RX1(τ)

τ

RX2(τ)

τ

• So RX(τ) is a measure of the rate of change of X(t) with time t, i.e., the
frequency response of X(t)

• It turns out that this is not just an intuitive interpretation— the Fourier
transform of RX(τ) (the power spectral density) is in fact the average power
density of X(t) over frequency
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Power Spectral Density

• The power spectral density (psd) of a WSS random process X(t) is the Fourier
transform of RX(τ):

SX(f) = F
(

RX(τ)
)

=

∫ ∞

−∞

RX(τ)e−i2πτfdτ

• For a discrete time process Xn, the power spectral density is the discrete-time
Fourier transform (DTFT) of the sequence RX(n):

SX(f) =
∞
∑

n=−∞

RX(n)e−i2πnf , |f | < 1
2

• RX(τ) (or RX(n)) can be recovered from SX(f) by taking the inverse Fourier
transform or inverse DTFT:

RX(τ) =

∫ ∞

−∞

SX(f)ei2πτfdf

RX(n) =

∫ 1
2

−1
2

SX(f)ei2πnfdf
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Properties of the Power Spectral Density

1. SX(f) is real and even, since the Fourier transform of the real and even
function RX(τ) is real and even

2.
∫∞

−∞
SX(f)df = RX(0) = E(X2(t)), the average power of X(t), i.e., the area

under SX is the average power

3. SX(f) is the average power density, i.e., the average power of X(t) in the
frequency band [f1, f2] is

∫ −f1

−f2

SX(f) df +

∫ f2

f1

SX(f) df = 2

∫ f2

f1

SX(f) df

(we will show this soon)

• From property 3, it follows that SX(f) ≥ 0. Why?

• In general, a function S(f) is a psd if and only if it is real, even, nonnegative,
and

∫ ∞

−∞

S(f) df < ∞
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Examples

1. RX(τ) = e−α|τ |

τ

SX(f) =
2α

α2 + (2πf)2

f

2. RX(τ) =
α2

2
cosωτ

τ

SX(f)

α2

4
α2

4

f
− ω

2π
ω
2π
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3. RX(n) = 2−|n|

n
−4−3−2−1 1 2 3 4

SX(f) =
3

5 − 4 cos 2πf

f
−1

2
1
2

4. Discrete time white noise process: X1,X2, . . . ,Xn, . . . zero mean, uncorrelated,
with average power N

RX(n) =

{

N n = 0

0 otherwise

N

n

SX(f)

N

f
−1

2 +1
2

If Xn is also a GRP, then we obtain a discrete time WGN process
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5. Bandlimited white noise process: WSS zero mean process X(t) with

SX(f)

N
2

f
−B B

RX(τ) = NB sinc 2Bτ

1
2B

2
2B

τ

For any t, the samples X
(

t±
n

2B

)

for n = 0, 1, 2, . . . are uncorrelated

6.White noise process: If we let B → ∞ in the previous example, we obtain a
white noise process, which has

SX(f) =
N

2
for all f

RX(τ) =
N

2
δ(τ)
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If, in addition, X(t) is a GRP, then we obtain the famous white Gaussian noise
(WGN) process

• Remarks on white noise:

◦ For a white noise process, all samples are uncorrelated

◦ The process is not physically realizable, since it has infinite power

◦ However, it plays a similar role in random processes to point mass in physics
and delta function in linear systems

◦ Thermal noise and shot noise are well modeled as white Gaussian noise, since
they have very flat psd over very wide band (GHz)
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Continuity and Integration of Random Processes

• We are all familiar with the definitions of continuity and integration for
deterministic functions as limits

• Using the notions of convergence discussed in Lecture Notes 5, we can define
these notions for random processes. We focus only on m.s. convergence

• Continuity : A process X(t) is said to be mean square continuous if for every t

lim
s→t

E[(X(s)−X(t))2] = 0

• The continuity of X(t) depends only on its autocorrelation function RX(t1, t2)

In fact, the following statements are all equivalent:

1. RX(t1, t2) is continuous at all points of the form (t, t)

2. X(t) is m.s. continuous

3. RX(t1, t2) is continuous in t1, t2
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Proof:

1. 1 implies 2: Since if RX(t1, t2) is continuous at all points (t, t),

E[(X(t)−X(s))2] = RX(t, t) + RX(s, s)− 2RX(s, t) → 0 as s → t

2. 2 implies 3: Consider

RX(s1, s2) = E[X(s1)X(s2)]

= E[(X(t1) + (X(s1)−X(t1)))(X(t2) + (X(s2)−X(t2)))]

= RX(t1, t2) + E[X(t1)(X(s2)−X(t2))] + E[X(t2)(X(s1)−X(t1))]

+ E[(X(s1)−X(t1)))(X(s2)−X(t2)))]

≤ RX(t1, t2) +
√

E[X2(t1)] E[(X(s2)−X(t2))2]

+
√

E[X2(t2)] E[(X(s1)−X(t1))2]

+
√

E[(X(s1)−X(t1))2] E[(X(s2)−X(t2))2] Schwartz inequality

→ RX(t1, t2) as s1 → t1 and s2 → t2

since X(t) is m.s. continuous

3. Since 3 implies 1, we are done
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• Example: The Poisson process N(t) with rate λ > 0 is m.s. continuous, since
its autocorrelation function,

RN(t1, t2) = λmin{t1, t2}+ λ2t1t2

is a continuous function

• Integration: Let X(t) be a RP and h(t) be a function. We can define the
integral

∫ b

a

h(t)X(t)dt

as the limit of a sum (as in Riemann integral of a deterministic function) in m.s.

Let ∆ > 0 such that b− a = n∆ and
a ≤ τ1 ≤ a+∆ ≤ τ2 ≤ a+2∆ ≤ · · · ≤ τn−1 ≤ a+(n−1)∆ ≤ τn ≤ a+n∆ = b,
then the corresponding Riemann sum is

n−1
∑

i=1

h(τi)X(τi)∆

The above integral then exists if this sum has a limit in m.s. as ∆ → 0
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Moreover, if the random integral exists for all a, b, then we can define
∫ ∞

−∞

h(t)X(t)dt = lim
a,b→∞

∫ b

a

h(t)X(t)dt in m.s.

• Fact: The existence of the m.s. integral depends only on RX and h

More specifically, the above integral exists iff
∫ b

a

∫ b

a

RX(t1, t2)h(t1)h(t2)dt1dt2

exists (in the normal sense)

• Remark: We are skipping several mathematical details here. In what follows, we
use the above fact to justify the existence of integrals involving random
processes and in interchanging expectation and integration
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Stationary Ergodic Random processes

• Let X(t) be SSS or only WSS

• Ergodicity of X(t) means that certain time averages converge to their
respective statistical averages

• Mean ergodic process: Let X(t) be a WSS and m.s. continuous RP with mean
µX

To estimate the mean of X(t), we form the time average

X̄(t) =
1

t

∫ t

0

X(τ)dτ

The RP X(t) is said to be mean ergodic if X̄(t) → µX as t → ∞ in m.s.

Similarly for a discrete RP, the time average (same as sample average) is

X̄n =
1

n

n
∑

i=1

Xn

and the RP is mean ergodic if X̄n → µX in m.s.
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• Example: Let Xn be a WSS process with CX(n) = 0 for n 6= 0, i.e., the Xis
are uncorrelated, then Xn is mean ergodic

• The process does not need to have uncorrelated samples for it to be mean
ergodic, however

• Whether a WSS process is mean ergodic again depends only on its
autocorrelation function

By definition, mean ergodicity means that

lim
t→∞

E[(X̄(t)− µX)2] → 0

Since E(X̄(t)) = µX , the condition for mean ergodicity is the same as

lim
t→∞

Var(X̄(t)) = 0
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Now, consider

E(X̄2(t)) = E

[

(

1

t

∫ t

0

X(τ)dτ

)2
]

= E

(

1

t2

∫ t

0

∫ t

0

X(τ1)X(τ2)dτ1dτ2

)

=
1

t2

∫ t

0

∫ t

0

RX(τ1, τ2)dτ1dτ2

=
1

t2

∫ t

0

∫ t

0

RX(τ1 − τ2)dτ1dτ2

From figure below, this double integral reduces to the single integral

E(X̄2(t)) =
2

t2

∫ t

0

(t− τ)RX(τ)dτ
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τ1

τ2

t

τ = t

τ = −t

tτ τ +∆τ
τ 1

−
τ 2

=
τ

• Hence, a WSS process X(t) is mean ergodic iff

lim
t→∞

2

t2

∫ t

0

(t− τ)RX(τ)dτ = µ2
X
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• Example: Let X(t) be a WSS with zero mean and RX(τ) = e−|τ |

Evaluating the condition on mean ergodicity, we obtain

2

t2

∫ t

0

(t− τ)RX(τ)dτ =
2

t2
(e−t + t− 1),

which → 0 as t → ∞. Hence X(t) is mean ergodic

• Example: Consider the coin with random bias P example in Lecture Notes 5.
The random process X1,X2, . . . is stationary

However, it is not mean ergodic, since X̄n → P in m.s.

• Remarks:

◦ The process in the above example can be viewed as a mixture of IID
Bernoulli(p) processes, each of which is stationary ergodic (it turns out that
every stationary process is a mixture of stationary ergodic processes)

◦ Ergodicity can be defined for general (not necessarily stationary) processes
(this is beyond the scope of this course, however)
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