Post-Modernism
Introduction

• Instructor:
 – Pascal Stang, Teaching Fellow, EE

• Guest Lecturer:
 – John Gill, Associate Professor ISL

• TA:
 – David Black-Schaffer, Graduate Student, EE
Lecture #0 Outline

• Administrative Trivia
• What is an embedded system?
• Designing embedded systems
• Introduction to the AVR
• Lab #0: Start Thinking About Your Project
• Lab #1: Blinking Lights on the STK-500
Administrative Trivia

• Maximum Class Capacity
• Course Information Sheet
 – Contact Info
 – Lab
 – Lectures
 – Grading
 – Late Policy
 – Online resources
Survey: Have You...

• got a windows PC? (or linux?)
• programmed in assembly and C?
• ever used a logic analyzer?
• ever worked with microcontrollers before?
• ever soldered before?
• ever built anything for fun?
What is an “embedded system”?

- What makes a microcontroller:
 - Self Contained
 - CPU
 - Memory
 - I/O
 - Application or Task Specific
 - Not a general-purpose computer
 - Appropriately scaled for the job
But What About…

- Embedded PCs?
- “Soft” Processors on PLDs?
- Systems On A Chip?
• Microcontrollers
 – Don’t have keyboard and monitor jacks
 – Must use ports to perform I/O
 • Inputs – to sense things
 • Outputs – to control things

• Related Component Topics
 – Cool Parts
 – Common Interfaces
 – Part Packages
What You’ll Do:

– Labs
 • Lab 0 – Think about your project
 • Lab 1 – Blinking Lights (pushbuttons and LEDs)
 • Lab 2 – Ascii-to-Morse Converter
 • Lab 3 – LCD Clock
 • Lab 4 – “Video Paint”
 • New ideas welcome…

– Presentation

– Final Project
 • Hardware
 • Report
 • Presentation
Are you still reading these?
Introduction to the AVR

- AVR Studio Assembler Example
- Assembler Directives
- AVR Instruction Set
- More About The AVR
AVR Studio Example

- What does it generate?
 - .obj
 - .hex

- How about blink.asm?
 - Set up a project
 - Run in simulation
 - Look at generated files…
Assembler Directives

- .device
- .include
- .org
- .def
- .equ
- .db
AVR Instruction Set

- What were they trying to do?
- How did they implement it?
- What are the “useful” instructions?
More about the AVR

• What are the features of RISC?
 – 1 instruction per clock cycle (pipelined)
 – Lots of registers: 32 GP registers
 – Register-to-register operation

• Variations in the parts:
 – TINY to MEGA
 – ATtiny10
 • Processor has only 8 pins – what good is it?
 – ATmega128
 • Processor has 64 pins – what do I need them all for?
Databooks Online

- Virtually all new part datasheets are available online.
- Paper databooks are static.
- Online errata can save you from headaches.
Lab Assignment #0

• What do you want to make?
 – Cool Toy
 – Communication Widget
 – Specialty Control System
 – Pointless Active Desk-Art
 – A “Killer” Device

• Details about the basic project requirements will be posted on the web page
Lab Assignment #1

- Blinking Lights.
 - Make sure you can make AVR Studio work.
 - Figure out some variations on the demonstration program.
 - Dealing with Button Bounce
 - Get comfortable with the AVR Instruction Set.