Lecture #3 Outline

• Announcements

• AVR Processor Resources
 – UART (Universal Asynchronous Receiver/Transmitter)
 – SPI (Serial Peripheral Interface)
Announcements

- Have you finished Lab #1?
 - Due date is: **Monday, (5pm?)**

- Lab#0
 - Research your ideas
 - Project Idea Discussion (arrange to meet)
 - Do you need a group

- In-Circuit Emulator (AVR-ICE)
 - Works like simulator but on real hardware
 - One station available, second one coming soon
• Interrupts
• Timers
• UART (Universal Asynchronous Receiver/Transmitter)
• SPI (Serial Peripheral Interface)
• A/D Converters (Analog to Digital)
• Analog Comparator
• General Purpose Ports
 – PORTA
 – PORTB
 – PORTC
 – PORTD
 – (Special Functions)
• Special Purpose Pins
 – Crystal (XTAL1/XTAL2)
 – RESET
 – ICP, OLE, OC1B
• Power (VCC/GND)
• 32 Registers (R0-R31)
• 4K Prog ROM
• 512 bytes RAM
• 512 bytes EEPROM
• 32 I/O lines
• 13 Interrupts
• Lots of fun built-in peripherals
• The UART, or Universal Asynchronous Receiver Transmitter, provides hardware support for a serial port on AVR processors
 – Signaling is compatible with PC/Mac/Unix serial (RS-232C)
• The UART provides:
 – Parallel-to-Serial and Serial-to-Parallel conversion
 – Start and Stop Bit framing
 – Parity Generation
 – Baud-Rate Generation (2400-115.2kbps at 3.686 or 7.37MHz)
 – Interrupts
 • Transmit Complete
 • Transmit Data Register Empty
 • Receive Complete
Serial Specification (RS-232C)

- **Data**
 - Start bit
 - 6, 7, 8, 9 data bits
 - Parity bit optional (E, O, M, S, N)
 - Stop bit

- **Voltages**
 - Processor outputs 0/5V logic-level signal
 - RS-232C uses +12V/-12V signal
 - Level-converter IC provided on STK500 (MAX202)
- **UDR (UART Data Register)**
 - Write bytes to transmit
 - Read received bytes

- **USR (UART Status Register)**
 - Rx/Tx complete signal bits
 - Framing error, overflow signal bits

- **UCR (UART Control Register)**
 - Interrupt enable bits
 - Rx/Tx enable bits
 - Data format control bits

- **UBRR (UART Baud Rate Register)**
 - Baud rate generator division ratio
UART Transmitting

- Send a byte by writing to UDR register
 - TXC bit in USR is set when the final bit has finished transmitting
 - Tx Complete interrupt triggered if enabled in the UCR
 - Must wait for current byte to finish transmitting before sending the next one
• How do I know a byte has arrived?
 – Watch the RXC bit in USR
 – Use the Rx Complete interrupt and write an ISR
• Read received bytes from the UDR
 – UDR is double-buffered, but be sure to read it in time
• Set by UBRR
• Varies with f_{CK}

![Table](image)

BAUD Rate Formulas

$$BAUD = \frac{f_{CK}}{16(UBRR + 1)}$$

- BAUD = Baud rate
- f_{CK} = Crystal Clock frequency
- UBRR = Contents of the UART Baud Rate register, UBRR (0 - 255)
UART Example Code

- echo1.asm
 - Echos characters sent over serial port back to the sender
 - Shows setup of UART
 - Shows non-interrupt use of both serial receive and transmit

- echo2.asm
 - Echos only printable characters
 - Uses interrupt-driven receive
 - Implements a 50-byte receive buffer
 - Can be used as starter code for Lab#2

- Available on the course website
STK500 UART Connection

Figure 3-10. Schematic of UART Pin Connections
Serial Peripheral Interface

- Allows transfer of information, 8 bits at a time, between microcontroller and any number of peripherals
- Read and Write operations happen simultaneously
- Using chip selects allows lots of peripherals to be connected to a single SPI bus at the same time
- Has no start/stop bit overhead
- High data rates: 250Kbit to 2Mbit/sec
- Common uses:
 - Inter-Processor Network
 - Sending MP3 data to MP3 decoders
 - Interfacing to external serial RAM/EEPROM/FLASH
 - Interfacing to serial graphic LCDs
 - Compatible with thousands of chips with SPI, Microwire, I2S, and other serial interfaces
SPI Pins and Registers

- SPI Pins
 - MOSI (master out, slave in)
 - MISO (master in, slave out)
 - SCK (serial clock)
 - SS (slave select, optional)

- SPI Registers
 - SPDR (transferred data read/write register)
 - SPCR (control register)
 - SPSR (status register)
 - SPI Transfer Complete interrupt