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Abstract

In this work we propose optimal power flow problem maximizing social welfare
in the presence of renewables. We use online learning approach to do the stochastic
optimization, which also means we do not assume availablity of prior knowledge of
the distribution functions involved. We restric our work to power systems with tree
topology which allowed us to solve the exact problem (no DC approximation required).
We also study optimal locational marginal prices and congestion cost of transmission
line in presence of renewables. In addition we formulate OPF to take into account
diurnal patterns in renewables.

1 Introduction

In deregulated electricity market, electrical energy is bought and sold like any other co-
modity. In one of the model we have three key players in the market, generators, load and
independent grid operator (IGO). Generators are sellers of electricity, they submit their
cost function to IGO, similarly load are buyers and they submit their utility function (or
economic benefit function) to IGO. Given cost and utility functions IGO decides quantity
of energy bought and sold from/to buyers and sellers. While making these decisions, IGO
takes into account the physical constraints associated with power flow and maximum ca-
pacity of transmission lines between various generators and loads. More specifically IGO
solves Social Welfare maximization problem, the outome also includes locational marginal
prices (associated with each bus) and congestion cost for each transmission line [3].

There have been growing support for the clean generation of energy, and adding renew-
able generators to the grid. Two main characteristics of the renewable energy are: (a) It is
quite cheaply produced, (b) it is non-deterministic, unreliable & variable. The renewable
energy generation might also be supported by the government incentives, which means cost
function could be negative valued (we would not consider this case though). The unreliable
and variable nature is more prominent in case of wind and solar energy because weather
condition changes and cannot be reliably predicted. It is challenging to develop a good
scheme for social welfare. In general, the variability in renewable generation also leads to
variablity in power injection and LMP.

When renewables are present it is more meaningful to maximize the average social
welfare under average constraints on transmission line capacity. In general, we need to know
distribution function of the renewable generator’s capacity to solve a stochastic optimization
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problem. But distribution function may not be available, in this work we are proposing
online learning (or sampling) based method to solve such problem. More specifically we are
using stochastic subgradient method to solve the optimization problem ([4], [5]). As we will
see later, such an approach is not adversly affected by number of renewables and we need
not discretise the renewable generation capacity.

Finally we will explore the diurnal pattern [2] of renewables (e.g. wind). It refers to the
phenomenon that for specific season wind would start to blow and become calm at specific
time of day. Since such a pattern captures most of the variation in the wind, we can use
rolling horizon method to maximize social welfare over just one day.

The physical constraints of the power system involves non-linear functions [1] which
lead to non-convex optimization problem. Traditionally this has been resolved by taking
DC approximation [3]. DC approximation includes three key assumptions, (a) transmission
lines are lossless (no resistive component), (b) bus voltage magnitudes are close to unity (in
per unit), (c) bus voltage phases are quite close to each other. These assumptions might not
hold, for instance, renewables might not have close phase angles due to absence of actual
rotating parts. Recent results [6] have shown that if power system network follow specific
topology (e.g. tree) then it might be possible to transform the optimal power flow (OPF)
problem to a convex problem and solve it exaclty.

2 System Model

We model power system as network with node representing bus and edge representing
transmission line. We assume that each bus is either a generator bus or load bus. A
generator could be either renewable or non-renewable Figure 1. Note that a bus, with
multiple generators or loads connected to it, can be modeled by splitting the bus into
multiple busses and connecting them through low impedence transmission line. Let us
assume that there are N busses, indexed from 1 to N and J transmission lines, indexed
from 1 to J (transmission line can also be indexed by two bus indexes at either end of it).
Also, set of all load busses as BL, set of all renewable generator busses as BR and set of all
non-renewable generator busses as BNR.

Let Pi ∈ R be the power injected into the system at bus i. This would typically be
positive for generator bus and negative for load bus. Since we want to maximize social
welfare, let us define cost and utility functions. If bus i is the load bus let at Pi = x, Ui(x)
be its utility function. Similarly, if bus i is the generator bus, let Ci(x) be the cost of Pi = x
power generation. For simplicity of notation, for any bus i, we define utility and cost function
as: Ci(x) = −Ui(x) Then the social welfare is given as

∑
i∈BL Ui(Pi)−

∑
i∈BR,BNR Ci(Pi) =

−∑N
i=1Ci(Pi).

Let Vi = |Vi|ejθi be the voltage at bus i, and V be corresponding vector. Let Y = G+jB
(Y ∈ CN×N ) be the admittance matrix of the network of transmission lines. Element of
Y, Ymn = Gmn + jBmn, are linearly related to admittance of transmisison line (connecting
bus-m and bus-n) ymn = gmn + jbmn. Let Ii be the current injected into the network at
bus i, and I is corresponding vector. Bus current and bus voltages are related as, I = YV.

The bus power injection Pi is constraint by bus voltages as, Pi =
∑N

k=1 |Vi||Vk|(Gikcosθik+
Biksinθik). The difference between power generated and power consumed is the heat dissi-
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pated in the transmission lines. The heat loss in transmission line (m,n) as a function of
bus voltage is given as Lmn(V) = |Vm − Vn|2gmn

3 Optimal Power Flow (OPF)

In this section we will go through some schemes of optimal power flow based on social
welfare maximization.

3.1 Deterministic OPF

We formulate social welfare maximization optimal power flow problem as follows:

minimize
V,P

N∑
i=1

Ci(Pi) (1)

subject to: Pi =

N∑
k=1

|Vi||Vk|(Gikcosθik +Biksinθik), i = 1, . . . , N (2)

Li(V) ≤ lmax, i = 1, . . . , J (3)

Vmin ≤ |Vi| ≤ Vmax, i = 1, . . . , N (4)

Pi ≤ Pmaxi , i ∈ BR (5)

Pi ≤ 0, i ∈ BL (6)

Note that objective (1) corresponds to maximizing social utility. Equation (2) represent
physical constraint on P (θik = θi − θk), it also implies that supplied power equals power
consumed and heat loss. There is physical limit to how much heat can be dissipated in
transmission line without any damage, lmax in (3) is that limit. This constraint is sometimes
[3] approximated as maximum power transmission capacity of line. Equation (4) is bus
voltage magnitude limit constraint, which is assumed to be unity in some linear models.
Pmaxi in (5) is maximum power generation capacity of renewable generators, for instance in
case of wind mill Pmaxi depends on wind speed. Finally, (6) means that load cannot inject
power into the system.

The optimization problem in this form is hard to solve. Interestingly, a subset of this
general problem can be tranformed into a convex problem. Let W ∈ SN+ be a hermitian
symmetric positive semidefinite matrix of rank 1 (Wmn being its element), then we do
following change of variables (to make the functions linear):

W = VVH (7)

N∑
k=1

|Vi||Vk|(Gikcosθik +Biksinθik) = <(

N∑
k=1

WikY
∗
ik) (8)

Lmn(W) = gmn(Wii +Wkk −Wik −Wki) (9)
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Refer to [6] for more details. Now consider following modified optimization problem:

minimize
W,P

N∑
i=1

Ci(Pi) (10)

subject to: P = <(diag(WYH))←→ µ (11)

Li(W) ≤ lmax, i = 1, . . . , J ←→ λ (12)

V 2
min ≤Wii ≤ V 2

max, i = 1, . . . , N (13)

Pi ≤ Pmaxi , i ∈ BR (14)

Pi ≤ 0, i ∈ BL (15)

W ∈ SN+ (16)

[Rank(W) = 1] (17)

Here SN+ is set of all hermitian symmetric positive semidefinite matrices and diag(A) is
vector formed from diagonal entries of A. This problems is equivalent to the one discussed
before (1). If we relax Rank(W) = 1 constraint then this problem becomes convex convex
optimization problem. [6] showed that under certain conditions the optimal point satisfies
the rank constraint. The set of sufficient conditions are: (a) Ci(x) should be convex and
increasing; (b) The network topology should be tree; (c) If two buses are connected by
transmission line, both should not have lower bound on Pi; We would restrict our prob-
lem/system model to satisfy these conditions. Note that to ensure that (c) is satisfied we
did not add constraint Pi ≥ 0 for generator bus. Thus it is possible to have the optimal
point as P ∗i < 0 for generator, which has interpretation that if it is economically viable
generator bus can consume power (its cost/utility would be zero).

Here λ and µ are the dual variables of the corresponding constraints. The optimal value
of daul variable provides useful economic information. For our case, µi gives marginal price
at bus i (Locational Marginal Price - LMP). λi is the congestion cost for the transmission
line i, in other words, it is the marginal increase in optimal social utility per unit increase
in transmission line capacity (or more precisely, per unit increase in lmax).

Without any constraints on transmission line loss (12), the optimal LMP at each bus
tend to be close to each other. With the line loss constraint (being active), LMP tend to
separate from each bus and with the difference of the order of congestion cost λi. Without
constraint (14) the LMP is close to marginal cost, i.e. µ∗i ≈ |∂Ci(x)/∂x|x=P ∗

i
. Constraint

(14) can be thought of as value of cost function becoming extremely high around Pmaxi .
Thus if constraint (14) is active the LMP could be higher then marginal cost.

3.2 Stochastic OPF

The maximum power generation capacity of renewables vary with time i.e. Pmaxi (t) is
function of time (in case of wind mill, it depends on varying wind conditions). One way
to formulate optimal power flow problem is to solve above problem (10) independently for
every time instant, since we know the present renewable capacity we can solve the problem
exactly. In this case constraints would be satisfied for each time instants, which may not
be required for all the constraints. For instance, as long as the average heat dissipation is
below certain level instantaeneous heat loss could go very high.
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Thus we want to formulate OPF to reflect average objective and constraints. Let the
random variable (vector) X takes the value of Pmaxi , i ∈ BR . We formulate the following
OPF problem:

minimize
W(X),P(X)

EX

(
N∑
i=1

Ci(Pi(X))

)
subject to: P(X) = <(diag(W(X)YH))

EX(Li(W(X))) ≤ lmax, i = 1, . . . , J ←→ λ

V 2
min ≤Wii(X) ≤ V 2

max, i = 1, . . . , N

Pi(X) ≤ Pmaxi (X), i ∈ BR

Pi(X) ≤ 0, i ∈ BL

W(X) ∈ SN+

Note that solution of this problem, W(X),P(X), is function of X. In theory, it can be
solved if we assume X to be discrete random variable with known distribution function, since
the problem remains convex. And since we get to know value of the renewable generation for
current time instant (X0), the optimal power flow values could be found, W(X0),P(X0).
But the problem scales badly with some system parameter. Let number of discrete levels
of Pmaxi be ns and number of renewable generator be nr. Then X can take (ns)

nr values
and it becomes computationally infeasible to solve the OPF. Also, in many cases we do not
have knowledge of distribution function of X.

We thus propose an online learning approach to solve this problem. The iterative algo-
rithm is given as:

minimize
Wt,Pt

N∑
i=1

Ci(P
t
i ) +

J∑
i=1

λti
(
Li(W

t)− lmax
)

(18)

subject to: Pt = <(diag(WtYH)) (19)

V 2
min ≤W t

ii ≤ V 2
max, i = 1, . . . , N (20)

P ti ≤ Pmax, ti , i ∈ BR (21)

P ti ≤ 0, i ∈ BL (22)

Wt ∈ SN+ (23)

λt+1
i = λti +

α

t

(
Li(W

t)− lmax
)

(24)

For every time slot t optimization problem is solved (18) and λi is updated for next time
slot t + 1. Over the time the algorithm ’learns’ the distribution of X, and λ converges to
optimal value. Here we are essentially using stochastic subgradient method ([4], [5]) to solve
the problem, details are furnished in Appendix (Section 5.1).
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3.3 Optimal Distribution

Different distribution on Pmaxi would lead to different optimal value of social welfare. We
would like to know how the optimal value depends on the distribution, keeping average (of
renewable generator capacity) constant. Thus we solve the OPF where we modify maximum
power constraint to be on an average.

minimize
W(X),P(X)

EX

(
N∑
i=1

Ci(Pi(X))

)
(25)

subject to: P(X) = <(diag(W(X)YH)) (26)

EX(Li(W(X))) ≤ lmax, i = 1, . . . , J ←→ λ (27)

V 2
min ≤Wii(X) ≤ V 2

max, i = 1, . . . , N (28)

EX(Pi(X)− Pmaxi (X)) ≤ 0, i ∈ BR (29)

Pi(X) ≤ 0, i ∈ BL (30)

W(X) ∈ SN+ (31)

It can be shown that optimal point of this problem are independent of X, that is,
(W∗(X),P∗(X)) = (W∗,P∗) (Section 5.2). Thus an optimal distribution would be one
with zero variance. It also suggests that optimal value may decrease on increasing variance
of the distribution. Another viewpoint to look at this is that if sufficient storage is available
then there is no effect of this wind (say) variablity, we can achieve the same social welfare
as in the case of constant wind.

3.4 Rolling Horizon

The wind speed is not identically distributed for all time throughout the day. For example,
wind may start blowing later in morning and calm down around night. Thus wind may
exhibit diurnal pattern [2]. Hence it would be relevant to formulate the problem which is
coupled over just finite number of time slots spanning a day. Let finite number of time slots
of a day be indexed from 1 to T ,
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minimize
W(t),P(t)

T∑
t=1

N∑
i=1

Ci(Pi(t)) (32)

subject to: P(t) = <(diag(W(t)YH)) t = 1, . . . , T (33)

1

T

T∑
t=1

Li(W(t)) ≤ lmax + δLi, i = 1, . . . , J (34)

V 2
min ≤Wii(t) ≤ V 2

max, i = 1, . . . , N (35)

Pi(t) ≤ Pmaxi (t) +
t−1∑
τ=1

(Pmaxi (τ)− Pi(τ)) + δPi, i ∈ BR, t = 1, . . . , T (36)

Pi(t) ≤ 0, i ∈ BL, t = 1, . . . , T (37)

W(t) ∈ SN+ , t = 1, . . . , T (38)

Here the objective is to maximize sum of social welfare across all time slots (32). (34)
is constriant on heat dissipation averaged across all time slots (ignore δLi for now). In this
problem we also assumed availability of battery for storage of renewable energy, so that
excess power can be used in future time slots. Thus Pi(t) at present cannot exceed (36)
capacity at present Pmaxi (t) plus excess energy stored in past

∑t−1
τ=1(P

max
i (τ)− Pi(τ)).

In the above problem the index t = 1 represent present time slot and t > 1 represent
future, we know the value of Pmaxi (t = 1) and use estimates for Pmaxi (t), t = 2, . . . , T
(rolling horizon). Similarly, we interpret optimal solution, P∗(t = 1) being fixed power
injection for present, and P∗(t > 1) just being estimates. As we move ahead in time the
number of time slots over which we optimize decreases and eventually toward the end of
the day it reduces to single time slot (T = 1). Also, δPi in (36) is excess power left from
past time slot (in a way t < 1 is past) of that day and δLi is associated with past heat loss.

Note that in this case a more optimal approach would be a problem which is coupled over
multiple days (rather than just multiple time slot in one day). But, most of the variation
in the wind is captured by diurnal pattern within a day so even this approach should be
close to optimal.

4 Simulation Results

For simulation we used the power system netwrok shown in Figure 1 , with number of bus
N = 12, number of transmission lines J = 11. Transmission line admittance ymn were
uniformly distributed within range [2 : 8] − j[18 : 30] per unit. The marginal utility/cost
function (∂Ui(x)/∂x) for load/generators has been shown in Figure 2. The utility function
for the load were chosen to be log function and cost function of the generator were quadratic
function. Cost function of renewable were chosen to be significant lower than the cost
function of non renewables. We used different distributions for Pmaxi but the average was
kept same, E(Pmaxi ) = 5 per unit. The maximum limit on line heat dissipation is taken as,
lmax = 0.5 per unit. The maximum bus voltage constraint is Vmax = 1.2 per unit. Finally
all the problems formulated are convex and cvx was used to solve them.
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4.1 Deterministic OPF simulation

Deterministic OPF was solved with fixed value of Pmaxi = 0.5 for every renewable. Figure
3 shows the optimal power injection thus obtained, to get some perspective marginal util-
ity/cost is also shown. Note that, renewables accounts for most of the power flowing into
the network because of low cost. Also loads with higher utility function tends to get more
power from the system. Figure 4 shows locational marginal prices at various busses and
congestion cost at transmission lines. Note bus-1 & bus-4 separated with congested trans-
mission line-3 have LMPs with huge difference. Intuitively, bus-1 is connected to renewable
generator and bus-4 is connected to load with highest utility function value, causing huge
power flow from bus-1 to bus-4 and hence congestion on line-3.

4.2 Stochastic OPF simulation

At each iteration (time) of stochastic OPF Pimax was drawn from exponential distribution
with E(Pmaxi ) = 5. Wind is known to follow exproximately rayleigh distribution, hence
exponential distribution for the maximum power capacity. Figure 5 shows convergence of
the lagrange multipliers λi thiss with iteration counts. Since we used stochastic subgradient
method, it may not converge exactly, but still gets very close to optimal value. Figure 6
shows variation of renewable generation Pmax1 and LMP µ4 at load bus. Here we note that
at the time of high renewable generation the LMP at bus-4 falls and vice-versa. Since cost
of renewable is much less, an increase in generated power leads to more power to flow to the
load which leads to lower LMP. Figure 7 shows variation in line loss with time (for couple
of lines). Note that instantaeneous line loss can go higher than maximum heat dissipation
limit (lmax = 0.5) but average stays below, this leads to higher average social welfare.

The effect of different distributions of Pmaxi or more specifically effect of different stan-
dard deviation in Pmaxi . Assuming it to be normally distributed about same mean we
plotted optimal value of social welfare for different standard deviations, Figure 8 . In gen-
eral, social welfare tends to decrease with increase in standard deviation. We also observed
that congestion cost tends to increase with increse in standard deviation.

5 Appendix

5.1 Online Learning

Let us reformulate the dual problem as follows:
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G(λ) = minimize
W(X),P(X)

EX

(
N∑
i=1

Ci(Pi(X))

)
+

J∑
i=1

λiEX (Li(W(X))− lmax) (39)

subject to: P(X) = <(diag(W(X)YH)) (40)

V 2
min ≤Wii(X) ≤ V 2

max, i = 1, . . . , N (41)

Pi(X) ≤ Pmaxi (X), i ∈ BR (42)

Pi(X) ≤ 0, i ∈ BL (43)

W(X) ∈ SN+ (44)

maximize
λ

G(λ) (45)

We decouple the problem over values of X, so that for all X we solve following :

minimize
W(X),P(X)

N∑
i=1

Ci(Pi(X)) +

J∑
i=1

λi (Li(W(X))− lmax) (46)

subject to: P(X) = <(diag(W(X)YH)) (47)

V 2
min ≤Wii(X) ≤ V 2

max, i = 1, . . . , N (48)

Pi(X) ≤ Pmaxi (X), i ∈ BR (49)

Pi(X) ≤ 0, i ∈ BL (50)

W(X) ∈ SN+ (51)

and use subgradient method (iterative nature denoted by index t) to maximize G(λ).

λt+1
i = λti +

α

t
EX (Li(W(X))− lmax) (52)

we can use stochastic subgradient, that is, we need not take EX() at each iteration but it
will average out itself if X is drawn randomly:

λt+1
i = λti +

α

t
(Li(W(X))− lmax) (53)

Finally we assume that the values of random variable over time is ergodic process and
hence can replace X by t.

5.2 Optimal Distribution

Let us assume that we can store energy from renewables, for this case following problem
defination would be more appropriate:
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minimize
W,P

E

(
N∑
i=1

Ci(Pi)

)
subject to: E(Lk)− lmax ≤ 0

E(Pi − Pmaxi ) ≤ 0

P = <{diag(WYH)} ←→ µ

W ∈ SN+

(54)

The E() in above formulation can be replaced by time average:

minimize
W,P

1

T

T∑
t=1

(
N∑
i=1

Ci(P
t
i )

)

subject to:
1

T

T∑
t=1

Ltk − lmax ≤ 0

1

T

T∑
t=1

(P ti − Pmax−ti ) ≤ 0

P = <{diag(WYH)} ←→ µ

W ∈ SN+

(55)

Since above problem is convex, ∃λ, δ, such that following problem has same solution:

minimize
W,P

1

T

T∑
t=1

(
N∑
i=1

Ci(P
t
i )

)
+

N∑
i=1

λi

(
1

T

T∑
t=1

Ltk − lmax
)

+
M∑
j=1

δj

(
1

T

T∑
t=1

(P ti − Pmax−ti )

)
subject to:

P = <{diag(WYH)} ←→ µ

W ∈ SN+
(56)

which can be simplified as:

1

T

T∑
t=1

minimize
W,Pt

N∑
i=1

Ci(P
t
i ) +

M∑
j=1

λjL
t
j +

N∑
i=1

δiP
t
i

− M∑
j=1

λjl
max −

N∑
i=1

δiP
max−t
i

 (57)

This has two implications, (a) Optimization problem at each time instant can be solved
independently from other time instants (b) Optimization problem at each time instants
are identical. i.e. solution P∗t1 = P∗t2 = P∗. Thus we can solve following optimization
problem with intex t dropped:
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minimize
W,P

N∑
i=1

Ci(Pi)

subject to: Lk ≤ lmax

Pi ≤ E(Pwindi ) (for renewable)

Pi ≤ 0 (for load bus)

P = <{diag(WYH)} ←→ µ

W ∈ SN+

(58)
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Figure 1: Power system network with N = 12 busses (indexed from top to bottom and left
to right) and J = 11 transmission lines, BL = {4, 8, 10, 12}, BNR = {2, 3, 9, 11}, BR =
{1, 5, 6, 7}
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Figure 2: Marginal Cost/Utility functions for generators/loads, labels at start of the curve
represent the bus number.
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Figure 3: The power injection at various bus has been shown using dark lines on marginal
curves.
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Figure 4: LMP are shown near the bus and congestion cost are shown near center of line
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Figure 5: Convergence of lagrange multiplier representing congestion cost of some lines
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Figure 6: Figure shows the variation of LMP at bus-4 (load bus) with variations of wind
(and hence Pmax1 )
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Figure 7: Variation in line loss with time
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Figure 8: Effect of standard deviation of renewables on social welfare
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