Imaging radar views the Hector Mine earthquake of 1999. Orbiting satellite images the area before and after the earthquake, and records raw radar signals which must be processed to form an interferogram. The deformation signature, visible as the finely spaced pattern of color fringes, depicts detailed changes in the Earth's crust from motion during the earthquake. Measurement of the spatial distribution of the deformation permits solution for fault motion at depth, and may be useful in predictive studies of seismic activity. In this course we learn how to derive similar motions from spaceborne radar satellite measurements.

General Information

Lectures : Mitchell Earth Sciences Room 372; MW 10:30-11:45

Professor: Howard Zebker
Office: Mitchell 305 (or Packard 334)
Telephone: 723-8067
E-mail: zebker@stanford.edu
Office Hours: usually here from 7:30 AM, drop in any time

TA: Karissa Pepin
Office: 4th floor, Mitchell Bldg.
Telephone: TBA
E-mail: kspepin@stanford.edu

Recommended Text

Digital processing of Synthetic Aperture Radar Data
Cumming and Wong, Artech House, 2005.

Other good text references

Title: Synthetic Aperture Radar
Authors: J.C. Curlander and R.N. McDonough

Title: Synthetic Aperture Radar Processing
Authors: G. Franceschetti and R. Lanari
Publisher: CRC Press, 1999.
Course goal:

By the end of this course, students will be able to derive most properties of radar echoes from first physical principles, and be able to design and implement processing code that generates high-resolution images from the raw measurements. In addition, you will be able to use multiple channel systems to produce higher order data products such as interferometric and polarimetric analyses. Finally, you will be able to apply these products to a diverse set of geophysical applications.

Course description:

Radar has evolved from a largely military detection system into a sophisticated three-dimensional imaging tool with hundreds of applications ranging from commercial aviation to fundamental research in the earth and planetary sciences. The ability to measure and map surface topography and crustal change at unprecedented levels over large areas is fundamentally altering the way in which we can measure and model the processes, natural and man-made, that affect our environment. In this course we will investigate how radar images are formed and manipulated, as well as applications of the systems to problems such as measurement of the Earth crustal deformation mm precision. We will be presenting radar as a signal processing problem, rather than the traditional approach as an instrumentation problem, acknowledging the importance of digital computer algorithms in modern radar systems. The first half of the course will be largely devoted to radar image formation, and topics will include system design, scattering from natural surfaces, range and azimuth processing algorithms, and processor design. In the second half of the course we examine polarimetric radars, which are particularly suited to the study of vegetation cover, plus the increasingly important field of radar interferometry. Interferometric radar techniques, which have formed a large part of radar-related research over the past 10 years, provide a means to characterize very small changes or motions on the Earth over large areas.

The course will be presented in a lecture/seminar style. Each week there will be a significant computer exercise to give experience with implementation of the material presented in class. Some additional homework problems will also be assigned as appropriate. Lecture notes will be handed out routinely, and special handouts will also be distributed from time to time. Reading assignments will be given for most class meetings. These may be from the text or from other sources, most of which will be on reserve at Terman Engineering Library. Homework and computer assignments will generally be given on Wednesdays and collected on Wednesdays, with the results handed back by the following Monday or Wednesday. Cooperation on homework is encouraged, but you are expected to keep the work on an approximately equal basis. For now, plan on one midterm exam plus a final term project. Grades will be based on the totality of your work, with weightings of approximately 40% on the final project or exam, 25% on the midterm, 30% on homework, and up to 5% extra credit problems and so forth.

A course syllabus and a list of reference books are attached. Assigned readings will usually be from the text. You may also find that a different book presents material in ways you can more easily understand, although the selected text is quite good.
Weekly Topic(s)

Week 1. Overview and class procedures
 Basic concepts and notation
 What is an imaging radar?
 Elementary scattering theory

Week 2. Radar equation
 System design principles
 Image formation
 Radar as a signal processing problem

Week 3. Range Modulation Processing
 Range processing and matched filters
 Pulse compression
 FFT implementations

Week 4. Azimuth processing
 Synthetic aperture technique
 System impulse response
 Azimuth correlator design

Week 5. Range migration processing
 Focussing and autofocus algorithms
 Doppler tracking and filtering
 Multilook processing
 Midterm Examination through Lect. 2/3

Week 6. Polarimetry
 Scattering from vegetation
 Radiometric calibration
 Geometric distortion
 Assignment and Discussion of Final Exam

Week 7. Interferometry
 Interferometric radar
 Interferometric processing implementation
 Image registration
 Baseline determination

Week 8. Measurement of surface topography
 Topographic algorithms
 Application examples

Week 9. Velocity measurements
 Measurement of velocities
 Ocean current applications
 Glaciers and ice streams
 Airborne and spaceborne instrumentation

Week 10. Surface deformation measurements
 Two- and three-pass algorithms
 Earthquakes and volcanoes

Finals week
TAKE-OUT FINAL DUE, NOON, Monday
REFERENCES

Other books which may serve as useful references are listed below. These are on reserve in Terman Engineering Library, as well as the recommended texts.

Kraus, J.D. Radio Astronomy, McGraw-Hill, New York, 1966. (Later editions good also)

The following, though not on reserve, are also relevant and may be useful:
