EE 359: DISCUSSION SESSION 9

Agenda:

* OFDM
* Spread spectrum
* Multimode systems

Recap

Multi-carrier modulation

* ISI avoidance: divide signal bandwidth into narrow chunks ($\frac{B}{N} < B_c$)

* Guard bands / buffer - reduces spectral efficiency
 (but) less sensitive to time / frequency offset

* Orthogonal subcarriers -> implement as separate modulators or DFT
OFDM through DFT.

\[x[0], x[1], \ldots, x[N-1] \]

\[X[k] = \sum_{n=0}^{N-1} x[n] e^{-j \frac{2\pi nk}{N}} \]

\[(Q_w)_{ij} = w^{ki} \]

\[X = Q_w x \]

\[\text{Typically} \rightarrow O(N^2) \]

\[\text{FFT} \rightarrow O(N\log N) \]

Multi-carriers.

\[\times 2\pi f_1 t \]

\[\times 2\pi f_2 t \]

\[\times 2\pi f_3 t \]

\[\sum \]

Discussion Session 9 Page 2
OFDM

$X[n]$ → $\frac{s}{T} \rightarrow X[1] \rightarrow \cdots \rightarrow X[N-1]$

OFDM symbol

$T \times$

$X[n] \rightarrow D/A$

$\cos 2\pi f_c t$

$X[n] = \sum X[k] e^{j \frac{2\pi nk}{N}}$

RX

$\cos 2\pi f_c t$

$X[n] \rightarrow \frac{s}{T} \rightarrow FFT$

Cyclic Prefix

\[y[n] = h \ast x[n] + u[n] \]

Linear convolution not multiplication under DFT.
\[F_y = F_h \cdot F_x \quad J \rightarrow DFT \]

\[y[n] = \sum_{l=1}^{\mu} h[l] x[-l] \]

\[x[n] \]

\[y[n] = h \otimes x[n] + \nu \]

\[y[n] = H[k] x[n] \]

OFDM symbol, length \(N \)

CP \(\rightarrow \mu \) in a computationally cheap manner

CP \(\rightarrow + \) removes ISI (but) loss of spectral efficiency

What we transmit length \(N + \mu \)

representation
Matrix representation

\[Y = Hx + \nu \]

Touplitz

\[Y = \tilde{H}x + \nu \]

Circulant

\[\tilde{H} = \Omega_w^{-1} \sum \Omega_w \]

diagonal matrix

\[\text{diag}(\mathbf{F} h) \]

OFDM

Efficient implementation of multi-carriers

(187 removal !)
\[PAPR = \frac{\max_n |x[n]|^2}{E_n [1 + |x[n]|^2]} \]

Amplifier gain

\[x_0, \ldots, x_{n-1} \]

\[x_{n-m}, \ldots, x_0, \ldots, x_{n-1} \]

- Spread spectrum

Spread narrowband signal over a wider band

\[\text{indistinguishable from noise floor} \] (covert communication)
Signal processing and communication systems involve the allocation of wireless resources and interference rejection. This can be achieved through various means, such as wideband receivers.

FHSS (Frequency Hopping Spread Spectrum)

- Bluetooth uses frequency hopping spread spectrum (FHSS).

DSSS (Direct Sequence Spread Spectrum)

- Direct sequence spread spectrum (DSSS) uses spreading codes (chip sequence) \(s_c(t) \).

For narrowband signals, the spreading code is given by:

\[
\text{Narrowband signal: } g(t) \quad [T_s, \quad B_s = \frac{1}{T_s}]
\]

For transmit signals:

\[
T_X \rightarrow \quad g(t) \cdot s_c(t) = r(t)
\]

For receive signals:

\[
R_X \rightarrow \quad \tilde{g}(t) = \frac{1}{T_s} \int_{t=0}^{T_s} r(t) \cdot s_c(t) \, dt
\]
Multipath rejection:

\[R_x = \frac{1}{T_s} \int g(t) s_c(t - 2T) s_c(t) \, dt \approx 0 \]

Interference rejection:

\[s_c(t - 2T) s_c(t) \, dt = \delta(t) \]

\[\int s_c^2(t) s_c(t) \, dt \approx 0 \]

Narrowband interference rejection:

\[h(t) = s_c(t) - g(t) \]

Rake Receivers

- we can resolve multipath components
- Rake receivers gather energy from all multipath components
 - different branch, different component
 - s_c, w_c
Multimedia design considerations.

Q 6)

\[G \]

C DMA

\[G \]

\[\text{SINR} = \frac{G \, P}{(k-1) \, P} \]

\[\text{SINR} = \frac{G \, P}{(k-1) \, P + C \, N_0} \]

Q 7)

\[\sum \sum I_{\text{user i transmits}} \left[\begin{array}{l} \text{successfully in slot j} \\ \text{in slot j} \end{array} \right] = \]

FDMA