EE359 – Lecture 8 Outline

- **Announcements**
 - Schedule changes next week.
 - No lecture next Tues 2/3.
 - Makeup class: Wed 2/5 11:30-12:30pm w/lunch in Gates B03
 - Project proposals due 2/7; I can provide early feedback
 - MT week of 2/17, 6-8pm (pizza after), poll this week; details soon
 - New version of Reader with Chapters 1-7 available next week

- **Capacity of Fading channels**
 - Recap Optimal Rate/Power Adaptation with TX/RX CSI
 - Channel Inversion with Fixed Rate
 - Capacity of Freq. Selective Fading Channels
 - Linear Digital Modulation Review
 - Performance of Linear Modulation in AWGN

Review of Last Lecture

- **Channel Capacity**
 - Maximum data rate that can be transmitted over a channel with arbitrarily small error
 - Capacity of AWGN Channel: $\log_2[1+\gamma]$ bps
 - $\gamma=P_r/(N_0B)$ is the receiver SNR

- **Capacity of Flat-Fading Channels**
 - Nothing known: capacity typically zero
 - Fading Statistics Known (few results)
 - Fading Known at RX (average capacity)

 $$C = \int_0^\infty B \log_2 \left(1 + \gamma \right) p(\gamma) d\gamma \\ \leq B \log_2 \left(1 + \gamma \right)$$

Capacity in Flat-Fading: γ known at TX/RX

$$C = \max_{P(\gamma)} \left[\int \log_2 \left(1 + \frac{\gamma P(\gamma)}{\bar{P}} \right) p(\gamma) d\gamma \right]$$

Optimal Rate and Power Adaptation

$$\frac{P(\gamma)}{\bar{P}} = \begin{cases} \frac{\gamma}{\gamma_0} - \frac{1}{\gamma} & \gamma \geq \gamma_0 \\ 0 & \text{else} \end{cases}$$

$$C = \int_{\gamma_0}^{\gamma} \log_2 \left(\frac{\gamma}{\gamma_0} \right) p(\gamma) d\gamma.$$

- The instantaneous power/rate only depend on $p(\gamma)$ through γ_0

Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal
Capacity in Flat-Fading

Rayleigh
- AWGN Capacity
- Shannon Capacity of 600 Gb/s
- Maximum Output Power = 30 dBm

Log-Normal
- AWGN Capacity
- Shannon Capacity of 600 Gb/s
- Maximum Output Power = 30 dBm

For time-invariant channels, capacity achieved by water-filling in frequency.
- Capacity of time-varying channel unknown
- Approximate by dividing into subbands
 - Each subband has width B_c (like MCM/OFDM).
 - Independent fading in each subband
 - Capacity is the sum of subband capacities

Review of Linear Digital Modulation
- Signal over ith symbol period:
 \[s(t) = s_{i1}g(t)\cos(2\pi f_c t + \phi_0) - s_{i2}g(t)\sin(2\pi f_c t + \phi_0) \]
 - Pulse shape $g(t)$ typically Nyquist
 - Signal constellation defined by (s_{i1}, s_{i2}) pairs
 - Can be differentially encoded
 - M values for $(s_{i1}, s_{i2}) \rightarrow \log_2 M$ bits per symbol

- P_s depends on
 - Minimum distance d_{min} (depends on γ)
 - # of nearest neighbors α_M
 - Approximate expression:
 - Standard/alternate Q function
 \[P_s \approx \alpha_M Q\left(\sqrt{\beta_M \gamma_s}\right) \]

Main Points
- Channel inversion practical, but should truncate or get a large capacity loss
- Capacity of wideband channel obtained by breaking up channel into subbands
 - Similar to multicarrier modulation
 - Linear modulation dominant in high-rate wireless systems due to its spectral efficiency
- P_s approximation in AWGN:
 \[P_s \approx \alpha_M Q\left(\sqrt{\beta_M \gamma_s}\right) \]
- Alternate Q function useful in diversity analysis