EE359 – Lecture 11 Outline

Announcements

- Class project links posted (please check). Will have comments back this week.
- Midterm announcements
- HW5 posted, due Monday 4pm (no late HWs)
 - Regular OHs this week for TAs, mine are after class
- No HW next week (practice MTs)
- Makeup lecture here, tomorrow, at noon
- Diversity Combining Techniques
- Selection Combining
- Maximal Ratio Combining
- Transmit Diversity

Midterm Announcements

- Midterm: Thursday (11/9), 6-8 pm in (room TBD)
 - Food will be served after the exam!
- Review sessions
 - My midterm review will be during tomorrow's makeup lecture
 - TA review: Monday 11/6 from 4-6 pm in 364 Packard
- Midterm logistics:
 - Open book/notes; Bring textbook/calculators (have extras; adv. notice reqd)
 - Covers Chapters 1-7 (sections covered in lecture and/or HW)
- Special OHs next week:
 - Me: Wed 11/8: 9-11am, Thu 11/9: 12-2pm all in 371 Packard
 - Milind: Tues 11/7, 4-6pm, 3rd Floor Packard Kitchen Area + email
 - Tom: Wed 11/8: 5-7pm, Thu 11/9 2-4pm, 3rd Floor Packard Kitchen Area + email
- No HW next week
- Midterms from past 3 MTs posted:
 - 10 bonus points for "taking" a practice exam
 - Solutions for all exams given when you turn in practice exam

Review of Last Lecture

• Average
$$P_s$$
 (P_b): $\overline{P}_s = \int P_s(\gamma_s) p(\gamma_s) d\gamma_s$

- MGF approach for average P_s
 - Average P_s becomes a Laplace transform

$$\overline{P}_{s} = \frac{\alpha_{M}}{\pi} \int_{0}^{\pi} M_{\gamma_{s}} \left(\frac{-.5\beta_{M}}{\sin^{2} x} \right) dx$$

 $\overline{P}_{s} = \frac{\alpha_{M}}{\pi} \int_{0}^{\pi} M_{\gamma_{s}} \left(\frac{-.5\beta_{M}}{\sin^{2} x} \right) dx \quad \begin{vmatrix} M_{\gamma_{s}} \text{ is MGF of fading pdf of SNR} \\ \gamma_{s}, \alpha_{M}, \beta_{M} \text{ depends on modulation} \end{vmatrix}$

Combined average and outage P_s

Review Continued:

Delay Spread (ISI) Effects

• Delay spread exceeding a symbol time causes ISI (self interference).

- ISI leads to irreducible error floor: $\overline{P}_{b,floor} \approx (\sigma_{T_m}/T_s)^2$
 - Increasing signal power increases ISI power
- ISI imposes data rate constraint: T_s>>T_m (R_s<<B_c)

$$R \leq \log_2(M) \times \sqrt{\overline{P}_{b,floor}}/\sigma_{T_m}^2$$

Review Continued:

Introduction to Diversity

- Basic Idea
 - Send same bits over independent fading paths
 - Independent fading paths obtained by time, space, frequency, or polarization diversity
 - Combine paths to mitigate fading effects

Combining Techniques

- Selection Combining
 - Fading path with highest gain used
- Maximal Ratio Combining
 - All paths cophased and summed with optimal weighting to maximize combiner output SNR
- Equal Gain Combining
 - All paths cophased and summed with equal weighting
- Array/Diversity gain
 - Array gain is from noise averaging (AWGN and fading)
 - Diversity gain is change in BER slope (fading)

Our focus

Selection Combining Analysis and Performance

- Selection Combining (SC)
 - Combiner SNR is the maximum of the branch SNRs.
 - CDF easy to obtain, pdf found by differentiating.
 - Diminishing returns with number of antennas.
 - Can get up to about 20 dB of gain.

Figure 7.2: Outage Probability of Selection Combining in Rayleigh Fading.

MRC and its Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation

$$\overline{P}_b = \int P_b(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \int \int ... \int P_b(\gamma_{\Sigma}) p(\gamma_1) * p(\gamma_2) * ... * p(\gamma_M) d\gamma_1 d\gamma_2 ... d\gamma_M$$

- Hard to obtain in closed form
- Integral often diverges
- MGF Approach (N paths): Cover in HW and ppt, not lecture

$$\overline{P}_{b} = \frac{\alpha_{M}}{\pi} \int_{0}^{.5\pi} \prod_{i=1}^{N} \mathcal{M}_{\gamma_{i}} \left[\frac{-.5\beta_{M}}{\sin^{2} \varphi}; \gamma_{i} \right] d\varphi$$

$$\frac{M_{\gamma_{i}} \text{ is MGF of fading pdf of }}{i^{th} \text{ branch SNR } \gamma_{i}, \alpha_{M}, \beta_{M} \text{ depend on modulation}}$$

depend on modulation

Transmit Diversity

- With channel knowledge, similar to receiver diversity, same array/diversity gain
- Without channel knowledge, can obtain diversity gain through Alamouti scheme:
 - 2 TX antenna space-time block code (STBC)
 - Works over 2 consecutive symbols
 - Achieves full diversity gain, no array gain
 - Part of various wireless standards, including LTE
 - Hard to generalize to more than 2 TX antennas
 - Alamouti code not covered in lecture/exams

Main Points

- Selection diversity picks path with highest SNR
 - Diminishing returns with number of fading paths
- MRC optimally combines fading paths to maximize combiner SNR
 - MRC vs SC trade off complexity for performance.
 - MRC yields 20-40 dB gain, SC around 20 dB.
- Analysis of MRC simplified using MGF approach
- Transmit diversity with channel state information at the TX is same as RX diversity
 - Can obtain diversity gain even without channel information at transmitter via space-time block codes.