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Consider the MIMO channel
y = Hx + n,

where y ∈ CMr ,x ∈ XMt and H ∈ CMr×Mt . Here ni ∼ CN (0, 1) and E[xxH ] = ρ
Mt

I. The receiver estimates
x̂(y), an estimate for the transmitted vector x, based on its knowledge of the channel matrix H,X , and the
observation y.

We consider the following detection algorithms:

1. maximum likelihood (ML): This is the optimal detector from the point of view of minimizing the
probability of error (assuming equiprobable x). The maximum likelihood detector with IID Gaussian
noise at the receiver antennas solves the following problem.

x̂(y) = argminx∈XMt‖y −Hx‖2. (1)

The minimization is over x ∈ XMt , i.e. over all possible transmitted vectors. Unfortunately, solving
this problem involves computing the objective function for all XMt potential values of x. Hence the
ML detector has prohibitive (exponential in Mt) complexity.

2. linear receivers: The complexity of linear detectors is the same as the complexity of inverting or
factorizing a matrix of dimensions Mr ×Mt, hence the name. They work by spatially decoupling the
effects of the channel by a process known as MIMO equalization. This involves multiplying y with a
MIMO equalization matrix A ∈ CMt×Mr to get x̃(y) ∈ CMt . To get the estimate x̂(y) from x̃(y), we
perform coordinatewise decoding of x̃(y). The coordinatewise decoding operation is given by:

x̂(y)i = argmins∈X |x̃(y)i − s| for all i, (2)

i.e., it maps each coordinate to the closest constellation point.

We describe two common ways of obtaining x̃(y) from y:

• zero forcing (ZF): In zero forcing, the following problem is solved:

x̃(y) = argminx‖y −Hx‖2. (3)

Comparing with (1), we note that the constellation constraints on x have been removed. This
significantly reduces the complexity. For a square invertible matrix, the solution is given by

x̃(y) = H†y,

where H† is just H−1 if the matrix is square and invertible. If the matrix is not invertible or
not square we use the pseudo inverse instead. When Mt ≤ Mr, and there are at least Mt

linearly independent columns in H (we see this case often) the pseudo inverse (sometimes called
the Moore-Penrose pseudoinverse) is given by

H† = (HHH)−1HH .

The complexity of obtaining H† from H is roughly cubic in Mt for a square matrix. However
obtaining x̂(y) from x̃(y) is done in a time linear in Mt.
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• linear minimum mean squared error (L-MMSE): Zero forcing can cause noise amplification
if the minimum singular value of H is too small. This may be quantified by the notion of the
condition number of the matrix H. The condition number of the matrix H is a measure of the
relative magnitudes of the singular values of H. It is defined as the ratio between the largest and
the smallest singular values of H. When the condition number is unity or close to unity, the matrix
is said to be well conditioned. When the condition number is large, the matrix is ill conditioned.

To reduce the sensitivity of linear receivers to the conditioning of the matrix H, we can add a
regularization term to the objective function in (3) (in red).

x̃(y) = argminx‖y −Hx‖2 + λ‖x‖2,

for some λ > 0. The solution to this is given by

x̃(y) = (HHH + λI)−1HHy = HH(HHH + λI)−1y.

For λ = Mt

ρ , this is called the L-MMSE detector since it minimizes the mean squared error in
the estimate of x among all linear detectors, i.e., it solves the following problem:

x̃(y) = argmins Ex,n[‖s− x‖2],

such that s = Ay + b,

for any Mt×Mr matrix A and vector b ∈ CMt . Note that the minimization is only over all affine
functions of y, which is parametrized by A and b. The expectation is over the randomness in x
and n (the channel matrix H is assumed to be known and non random). If x were to be Gaussian
(instead of being from discrete constellation points), this is also the MMSE detector.

Compared to the ML detector, both the linear detectors are simpler to implement, but the BER
performances are worse.

3. sphere decoders (SD): The sphere decoder trades off performance versus complexity by controlling
a parameter r. By choosing a large enough r, the performance of SD approaches that of the ML
detector. For small r, the search space (and hence complexity) of the SD is much smaller than that
of the ML detector, but it suffers a performance degradation as a result. The sphere detector exploits
the following factorization of the matrix H:

H = QR,

where Q is unitary and R is upper triangular. Since the squared-distance norm does not change under
multiplication by a unitary matrix QH , we have

‖y −Hx‖2 = ‖QHy −QHQRx‖2 = ‖ỹ −Rx‖2 =

1∑
i=Mt

|ỹi −
Mt∑
j=i

Ri,jxj |2,

where ỹ , QHy, and we use the upper triangular nature of R in the last step. The sphere decoder
solves the following problem.

x̂(y) = argminx∈XMt ,‖QHy−Rx‖≤r‖QHy −Rx‖2 (4)

Note that choosing r =∞ gives us the ML decoder. For a smaller r, the solver can exploit the upper
triangular nature of R to “prune” many candidate solutions (using depth-first-search or breadth-first-
search or a combination of the two), thereby reducing the detection complexity significantly. One
surprising property of the SD is that if it finds a valid solution, it is the same solution that the ML
detector would have returned.
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