EE363 Winter 2008-09

Lecture 4 Continuous time linear quadratic regulator

- continuous-time LQR problem
- dynamic programming solution
- Hamiltonian system and two point boundary value problem
- infinite horizon LQR
- direct solution of ARE via Hamiltonian

Continuous-time LQR problem

continuous-time system $\dot{x} = Ax + Bu$, $x(0) = x_0$

problem: choose $u:[0,T]\to \mathbf{R}^m$ to minimize

$$J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)$$

- T is time horizon
- $Q=Q^T\geq 0$, $Q_f=Q_f^T\geq 0$, $R=R^T>0$ are state cost, final state cost, and input cost matrices

... an infinite-dimensional problem: (trajectory $u:[0,T]\to \mathbf{R}^m$ is variable)

Dynamic programming solution

we'll solve LQR problem using dynamic programming

for $0 \le t \le T$ we define the value function $V_t : \mathbf{R}^n \to \mathbf{R}$ by

$$V_t(z) = \min_{u} \int_t^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)$$

subject to x(t) = z, $\dot{x} = Ax + Bu$

- ullet minimum is taken over all possible signals $u:[t,T] \to {\bf R}^m$
- ullet $V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $\bullet \ V_T(z) = z^T Q_f z$

fact: V_t is quadratic, i.e., $V_t(z) = z^T P_t z$, where $P_t = P_t^T \ge 0$

similar to discrete-time case:

- ullet P_t can be found from a differential equation running backward in time from t=T
- ullet the LQR optimal u is easily expressed in terms of P_t

we start with x(t) = z

let's take $u(t)=w\in \mathbf{R}^m$, a constant, over the time interval [t,t+h], where h>0 is small

cost incurred over [t, t+h] is

$$\int_{t}^{t+h} \left(x(\tau)^{T} Q x(\tau) + w^{T} R w \right) d\tau \approx h(z^{T} Q z + w^{T} R w)$$

and we end up at $x(t+h) \approx z + h(Az + Bw)$

min-cost-to-go from where we land is approximately

$$V_{t+h}(z + h(Az + Bw))$$
= $(z + h(Az + Bw))^T P_{t+h}(z + h(Az + Bw))$
 $\approx (z + h(Az + Bw))^T (P_t + h\dot{P}_t)(z + h(Az + Bw))$
 $\approx z^T P_t z + h \left((Az + Bw)^T P_t z + z^T P_t (Az + Bw) + z^T \dot{P}_t z \right)$

(dropping h^2 and higher terms)

cost incurred plus min-cost-to-go is approximately

$$z^{T}P_{t}z + h\left(z^{T}Qz + w^{T}Rw + (Az + Bw)^{T}P_{t}z + z^{T}P_{t}(Az + Bw) + z^{T}\dot{P}_{t}z\right)$$

minimize over w to get (approximately) optimal w:

$$2hw^T R + 2hz^T P_t B = 0$$

$$w^* = -R^{-1}B^T P_t z$$

thus optimal u is time-varying linear state feedback:

$$u_{\text{lgr}}(t) = K_t x(t), \qquad K_t = -R^{-1} B^T P_t$$

HJ equation

now let's substitute w^* into HJ equation:

$$z^{T} P_{t} z \approx z^{T} P_{t} z + h \left(z^{T} Q z + w^{*T} R w^{*} + (A z + B w^{*})^{T} P_{t} z + z^{T} P_{t} (A z + B w^{*}) + z^{T} \dot{P}_{t} z \right)$$

yields, after simplification,

$$-\dot{P}_{t} = A^{T} P_{t} + P_{t} A - P_{t} B R^{-1} B^{T} P_{t} + Q$$

which is the Riccati differential equation for the LQR problem we can solve it (numerically) using the final condition $P_T=Q_f$

Summary of cts-time LQR solution via DP

1. solve Riccati differential equation

$$-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f$$

(backward in time)

2. optimal u is $u_{lqr}(t) = K_t x(t)$, $K_t := -R^{-1}B^T P_t$

DP method readily extends to time-varying $A,\ B,\ Q,\ R$, and tracking problem

Steady-state regulator

usually P_t rapidly converges as t decreases below T

limit $P_{\rm ss}$ satisfies (cts-time) algebraic Riccati equation (ARE)

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

a quadratic matrix equation

- ullet $P_{\rm ss}$ can be found by (numerically) integrating the Riccati differential equation, or by direct methods
- ullet for t not close to horizon T, LQR optimal input is approximately a linear, constant state feedback

$$u(t) = K_{ss}x(t), K_{ss} = -R^{-1}B^{T}P_{ss}$$

Derivation via discretization

let's discretize using small step size h > 0, with Nh = T

$$x((k+1)h) \approx x(kh) + h\dot{x}(kh) = (I+hA)x(kh) + hBu(kh)$$

$$J \approx \frac{h}{2} \sum_{k=0}^{N-1} \left(x(kh)^T Q x(kh) + u(kh)^T R u(kh) \right) + \frac{1}{2} x(Nh)^T Q_f x(Nh)$$

this yields a discrete-time LQR problem, with parameters

$$\tilde{A} = I + hA, \qquad \tilde{B} = hB, \qquad \tilde{Q} = hQ, \qquad \tilde{R} = hR, \qquad \tilde{Q}_f = Q_f$$

solution to discrete-time LQR problem is $u(kh) = \tilde{K}_k x(kh)$,

$$\tilde{K}_k = -(\tilde{R} + \tilde{B}^T \tilde{P}_{k+1} \tilde{B})^{-1} \tilde{B}^T \tilde{P}_{k+1} \tilde{A}$$

$$\tilde{P}_{k-1} = \tilde{Q} + \tilde{A}^T \tilde{P}_k \tilde{A} - \tilde{A}^T \tilde{P}_k \tilde{B} (\tilde{R} + \tilde{B}^T \tilde{P}_k \tilde{B})^{-1} \tilde{B}^T \tilde{P}_k \tilde{A}$$

substituting and keeping only h^0 and h^1 terms yields

$$\tilde{P}_{k-1} = hQ + \tilde{P}_k + hA^T\tilde{P}_k + h\tilde{P}_kA - h\tilde{P}_kBR^{-1}B^T\tilde{P}_k$$

which is the same as

$$-\frac{1}{h}(\tilde{P}_k - \tilde{P}_{k-1}) = Q + A^T \tilde{P}_k + \tilde{P}_k A - \tilde{P}_k B R^{-1} B^T \tilde{P}_k$$

letting $h \to 0$ we see that $\tilde{P}_k \to P_{kh}$, where

$$-\dot{P} = Q + A^T P + PA - PBR^{-1}B^T P$$

similarly, we have

$$\tilde{K}_{k} = -(\tilde{R} + \tilde{B}^{T} \tilde{P}_{k+1} \tilde{B})^{-1} \tilde{B}^{T} \tilde{P}_{k+1} \tilde{A}$$

$$= -(hR + h^{2} B^{T} \tilde{P}_{k+1} B)^{-1} h B^{T} \tilde{P}_{k+1} (I + hA)$$

$$\rightarrow -R^{-1} B^{T} P_{kh}$$

as $h \to 0$

Derivation using Lagrange multipliers

pose as constrained problem:

minimize
$$J=\tfrac{1}{2}\int_0^T x(\tau)^TQx(\tau)+u(\tau)^TRu(\tau)\ d\tau+\tfrac{1}{2}x(T)^TQ_fx(T)$$
 subject to
$$\dot{x}(t)=Ax(t)+Bu(t),\quad t\in[0,T]$$

- optimization variable is function $u:[0,T]\to \mathbf{R}^m$
- ullet infinite number of equality constraints, one for each $t \in [0,T]$

introduce Lagrange multiplier function $\lambda:[0,T]\to\mathbf{R}^n$ and form

$$L = J + \int_0^T \lambda(\tau)^T (Ax(\tau) + Bu(\tau) - \dot{x}(\tau)) d\tau$$

Optimality conditions

(note: you need distribution theory to really make sense of the derivatives here . . .)

from
$$\nabla_{u(t)}L = Ru(t) + B^T\lambda(t) = 0$$
 we get $u(t) = -R^{-1}B^T\lambda(t)$

to find $\nabla_{x(t)}L$, we use

$$\int_0^T \lambda(\tau)^T \dot{x}(\tau) \ d\tau = \lambda(T)^T x(T) - \lambda(0)^T x(0) - \int_0^T \dot{\lambda}(\tau)^T x(\tau) \ d\tau$$

from
$$\nabla_{x(t)}L = Qx(t) + A^T\lambda(t) + \dot{\lambda}(t) = 0$$
 we get

$$\dot{\lambda}(t) = -A^T \lambda(t) - Qx(t)$$

from
$$\nabla_{x(T)}L = Q_fx(T) - \lambda(T) = 0$$
, we get $\lambda(T) = Q_fx(T)$

Co-state equations

optimality conditions are

$$\dot{x} = Ax + Bu, \quad x(0) = x_0, \qquad \dot{\lambda} = -A^T \lambda - Qx, \quad \lambda(T) = Q_f x(T)$$

using $u(t) = -R^{-1}B^T\lambda(t)$, can write as

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix} = \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix}$$

- \bullet $2n \times 2n$ matrix above is called *Hamiltonian* for problem
- with conditions $x(0) = x_0$, $\lambda(T) = Q_f x(T)$, called two-point boundary value problem

as in discrete-time case, we can show that $\lambda(t) = P_t x(t)$, where

$$-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f$$

in other words, value function P_t gives simple relation between x and λ to show this, we show that $\lambda=Px$ satisfies co-state equation $\dot{\lambda}=-A^T\lambda-Qx$

$$\dot{\lambda} = \frac{d}{dt}(Px) = \dot{P}x + P\dot{x}$$

$$= -(Q + A^TP + PA - PBR^{-1}B^TP)x + P(Ax - BR^{-1}B^T\lambda)$$

$$= -Qx - A^TPx + PBR^{-1}B^TPx - PBR^{-1}B^TPx$$

$$= -Qx - A^T\lambda$$

Solving Riccati differential equation via Hamiltonian

the (quadratic) Riccati differential equation

$$-\dot{P} = A^T P + PA - PBR^{-1}B^T P + Q$$

and the (linear) Hamiltonian differential equation

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix} = \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} x(t) \\ \lambda(t) \end{bmatrix}$$

are closely related

 $\lambda(t) = P_t x(t)$ suggests that P should have the form $P_t = \lambda(t) x(t)^{-1}$ (but this doesn't make sense unless x and λ are scalars)

consider the Hamiltonian matrix (linear) differential equation

$$\frac{d}{dt} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix} = \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} X(t) \\ Y(t) \end{bmatrix}$$

where $X(t), Y(t) \in \mathbf{R}^{n \times n}$

then, $Z(t) = Y(t)X(t)^{-1}$ satisfies Riccati differential equation

$$-\dot{Z} = A^T Z + ZA - ZBR^{-1}B^T Z + Q$$

hence we can solve Riccati DE by solving (linear) matrix Hamiltonian DE, with final conditions $X(T)=I,\ Y(T)=Q_f$, and forming $P(t)=Y(t)X(t)^{-1}$

$$\dot{Z} = \frac{d}{dt}YX^{-1}
= \dot{Y}X^{-1} - YX^{-1}\dot{X}X^{-1}
= (-QX - A^{T}Y)X^{-1} - YX^{-1}(AX - BR^{-1}B^{T}Y)X^{-1}
= -Q - A^{T}Z - ZA + ZBR^{-1}B^{T}Z$$

where we use two identities:

•
$$\frac{d}{dt}(F(t)G(t)) = \dot{F}(t)G(t) + F(t)\dot{G}(t)$$

•
$$\frac{d}{dt} (F(t)^{-1}) = -F(t)^{-1} \dot{F}(t) F(t)^{-1}$$

Infinite horizon LQR

we now consider the infinite horizon cost function

$$J = \int_0^\infty x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau$$

we define the value function as

$$V(z) = \min_{u} \int_{0}^{\infty} x(\tau)^{T} Q x(\tau) + u(\tau)^{T} R u(\tau) d\tau$$

subject to x(0) = z, $\dot{x} = Ax + Bu$

we assume that (A,B) is controllable, so V is finite for all z can show that V is quadratic: $V(z)=z^TPz$, where $P=P^T\geq 0$

optimal u is u(t) = Kx(t), where $K = -R^{-1}B^TP$ (i.e., a constant linear state feedback)

HJ equation is ARE

$$Q + A^T P + PA - PBR^{-1}B^T P = 0$$

which together with $P \geq 0$ characterizes P

can solve as limiting value of Riccati DE, or via direct method

Closed-loop system

with K LQR optimal state feedback gain, closed-loop system is

$$\dot{x} = Ax + Bu = (A + BK)x$$

fact: closed-loop system is stable when (Q,A) observable and (A,B) controllable

we denote eigenvalues of A+BK, called *closed-loop eigenvalues*, as $\lambda_1,\ldots,\lambda_n$

with assumptions above, $\Re \lambda_i < 0$

Solving ARE via Hamiltonian

$$\begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ P \end{bmatrix} = \begin{bmatrix} A - BR^{-1}B^TP \\ -Q - A^TP \end{bmatrix} = \begin{bmatrix} A + BK \\ -Q - A^TP \end{bmatrix}$$

and so

$$\begin{bmatrix} I & 0 \\ -P & I \end{bmatrix} \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I & 0 \\ P & I \end{bmatrix} = \begin{bmatrix} A+BK & -BR^{-1}B^T \\ 0 & -(A+BK)^T \end{bmatrix}$$

where 0 in lower left corner comes from ARE

note that

$$\left[\begin{array}{cc} I & 0 \\ P & I \end{array}\right]^{-1} = \left[\begin{array}{cc} I & 0 \\ -P & I \end{array}\right]$$

we see that:

- ullet eigenvalues of Hamiltonian H are $\lambda_1,\ldots,\lambda_n$ and $-\lambda_1,\ldots,-\lambda_n$
- \bullet hence, closed-loop eigenvalues are the eigenvalues of H with negative real part

let's assume A + BK is diagonalizable, *i.e.*,

$$T^{-1}(A+BK)T = \Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$$

then we have $T^T(-A-BK)^TT^{-T}=-\Lambda$, so

$$\begin{bmatrix} T^{-1} & 0 \\ 0 & T^T \end{bmatrix} \begin{bmatrix} A + BK & -BR^{-1}B^T \\ 0 & -(A+BK)^T \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & T^{-T} \end{bmatrix}$$

$$= \begin{bmatrix} \Lambda & -T^{-1}BR^{-1}B^TT^{-T} \\ 0 & -\Lambda \end{bmatrix}$$

putting it together we get

$$\begin{bmatrix} T^{-1} & 0 \\ 0 & T^T \end{bmatrix} \begin{bmatrix} I & 0 \\ -P & I \end{bmatrix} H \begin{bmatrix} I & 0 \\ P & I \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & T^{-T} \end{bmatrix}$$

$$= \begin{bmatrix} T^{-1} & 0 \\ -T^T P & T^T \end{bmatrix} H \begin{bmatrix} T & 0 \\ PT & T^{-T} \end{bmatrix}$$

$$= \begin{bmatrix} \Lambda & -T^{-1}BR^{-1}B^TT^{-T} \\ 0 & -\Lambda \end{bmatrix}$$

and so

$$H\left[\begin{array}{c} T \\ PT \end{array}\right] = \left[\begin{array}{c} T \\ PT \end{array}\right] \Lambda$$

thus, the n columns of $\begin{bmatrix} T \\ PT \end{bmatrix}$ are the eigenvectors of H associated with the stable eigenvalues $\lambda_1,\ldots,\lambda_n$

Solving ARE via Hamiltonian

- find eigenvalues of H, and let $\lambda_1, \ldots, \lambda_n$ denote the n stable ones (there are exactly n stable and n unstable ones)
- find associated eigenvectors v_1, \ldots, v_n , and partition as

$$\left[\begin{array}{ccc} v_1 & \cdots & v_n \end{array}\right] = \left[\begin{array}{c} X \\ Y \end{array}\right] \in \mathbf{R}^{2n \times n}$$

• $P = YX^{-1}$ is unique PSD solution of the ARE

(this is very close to the method used in practice, which does not require A + BK to be diagonalizable)