Lecture ⁴Continuous time linear quadratic regulator

- continuous-time LQR problem
- dynamic programming solution
- Hamiltonian system and two point boundary value problem
- infinite horizon LQR
- direct solution of ARE via Hamiltonian

Continuous-time LQR problem

continuous-time system $\dot{x} = Ax + Bu$, $x(0) = x_0$

problem: choose $u: [0,T] \rightarrow {\mathbf R}^m$ to minimize

$$
J = \int_0^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)
$$

- \bullet $\ T$ is time horizon
- $\bullet\;Q=Q^T$ cost, and *input cost* matrices $^{T}\geq0,\ Q_{f}=Q_{f}^{T}$ $_f^T\geq0, \ R=R^T$ $T>0$ are state cost, final state

. . . an *infinite-dimensional problem*: (trajectory $u:[0,T]\rightarrow \mathbf{R}^m$ is variable)

Dynamic programming solution

we'll solve LQR problem using dynamic programmingfor $0\leq t\leq T$ we define the **value function** $V_t: \mathbf{R}^n$ $\mu \rightarrow \mathbf{R}$ by

$$
V_t(z) = \min_u \int_t^T \left(x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) \right) d\tau + x(T)^T Q_f x(T)
$$

subject to $x(t) = z$, $\dot{x} = Ax + Bu$

- $\bullet\,$ minimum is taken over all possible signals $u:[t,T]\rightarrow {\mathbf R}^m$
- $\bullet \; V_t(z)$ gives the minimum LQR cost-to-go, starting from state z at time t

$$
\bullet \ \ V_T(z) = z^T Q_f z
$$

fact: V_t is quadratic, $i.e., V_t(z) = z^T P_t z$, where $P_t = P_t^T \geq 0$

similar to discrete-time case:

- \bullet $\ P_t$ can be found from a *differential equation* running backward in time from $t = T$
- $\bullet\,$ the LQR optimal u is easily expressed in terms of P_t

we start with $x(t) = z$

let's take $u(t) = w \in \mathbf{R}^m$, a constant, over the time interval $[t, t+h],$ where $h > 0$ is small

cost incurred over $\left[t,t+h\right]$ is

$$
\int_{t}^{t+h} \left(x(\tau)^{T} Q x(\tau) + w^{T} R w \right) d\tau \approx h(z^{T} Q z + w^{T} R w)
$$

and we end up at $x(t+h) \approx z + h(Az + Bw)$

Continuous time linear quadratic regulator

min-cost-to-go from where we land is approximately

$$
V_{t+h}(z + h(Az + Bw))
$$

= $(z + h(Az + Bw))^T P_{t+h}(z + h(Az + Bw))$
 $\approx (z + h(Az + Bw))^T (P_t + h\dot{P}_t)(z + h(Az + Bw))$
 $\approx z^T P_t z + h ((Az + Bw)^T P_t z + z^T P_t(Az + Bw) + z^T \dot{P}_t z)$

(dropping
$$
h^2
$$
 and higher terms)

cost incurred plus min-cost-to-go is approximately

$$
z^T P_t z + h \left(z^T Q z + w^T R w + (Az + B w)^T P_t z + z^T P_t (Az + B w) + z^T \dot{P}_t z \right)
$$

minimize over w to get (approximately) optimal w :

$$
2hw^T R + 2hz^T P_t B = 0
$$

Continuous time linear quadratic regulator

$$
\mathsf{SO}\hspace{0.5pt}
$$

$$
w^* = -R^{-1}B^T P_t z
$$

thus optimal u is time-varying linear state feedback:

$$
u_{\text{lqr}}(t) = K_t x(t), \qquad K_t = -R^{-1} B^T P_t
$$

HJ equation

now let's substitute w^* into ${\sf H}$ J equation:

$$
z^T P_t z \approx z^T P_t z +
$$

+
$$
h \left(z^T Q z + w^{*T} R w^* + (Az + B w^*)^T P_t z + z^T P_t (Az + B w^*) + z^T \dot{P}_t z \right)
$$

^yields, after simplification,

$$
-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q
$$

which is the *Riccati differential equation* for the LQR problem we can solve it (numerically) using the *final condition* $P_T = Q_f$

Summary of cts-time LQR solution via DP

1. solve Riccati differential equation

$$
-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f
$$

(backward in time)

2. optimal u is $u_{\text{lqr}}(t) = K_tx(t)$, $K_t := -R^{-1}$ $^1B^T$ ${}^T P_t$

DP method readily extends to time-varying $A, \ B, \ Q, \ R,$ and tracking problem

Steady-state regulator

usually P_t rapidly converges as t decreases below T limit P_{ss} satisfies (cts-time) algebraic Riccati equation (ARE)

$$
A^T P + P A - P B R^{-1} B^T P + Q = 0
$$

^a quadratic matrix equation

- \bullet $\,P_{\rm ss}$ can be found by (numerically) integrating the Riccati differential equation, or by direct methods
- \bullet for t not close to horizon T , LQR optimal input is approximately a linear, constant state feedback

$$
u(t) = K_{ss}x(t), \qquad K_{ss} = -R^{-1}B^{T}P_{ss}
$$

Derivation via discretization

let's discretize using small step size $h>0,$ with $Nh=T$

$$
x((k+1)h) \approx x(kh) + h\dot{x}(kh) = (I + hA)x(kh) + hBu(kh)
$$

$$
J \approx \frac{h}{2} \sum_{k=0}^{N-1} (x(kh)^T Q x(kh) + u(kh)^T R u(kh)) + \frac{1}{2} x(Nh)^T Q_f x(Nh)
$$

this ^yields ^a discrete-time LQR problem, with parameters

$$
\tilde{A} = I + hA, \qquad \tilde{B} = hB, \qquad \tilde{Q} = hQ, \qquad \tilde{R} = hR, \qquad \tilde{Q}_f = Q_f
$$

solution to discrete-time LQR problem is $u(kh) = \tilde{K}_kx(kh)$,

$$
\tilde{K}_k = -(\tilde{R} + \tilde{B}^T \tilde{P}_{k+1} \tilde{B})^{-1} \tilde{B}^T \tilde{P}_{k+1} \tilde{A}
$$

$$
\tilde{P}_{k-1} = \tilde{Q} + \tilde{A}^T \tilde{P}_k \tilde{A} - \tilde{A}^T \tilde{P}_k \tilde{B} (\tilde{R} + \tilde{B}^T \tilde{P}_k \tilde{B})^{-1} \tilde{B}^T \tilde{P}_k \tilde{A}
$$

substituting and keeping only h^0 and h^1 terms yields

$$
\tilde{P}_{k-1} = hQ + \tilde{P}_k + hA^T \tilde{P}_k + h\tilde{P}_k A - h\tilde{P}_k BR^{-1} B^T \tilde{P}_k
$$

which is the same as

$$
-\frac{1}{h}(\tilde{P}_k - \tilde{P}_{k-1}) = Q + A^T \tilde{P}_k + \tilde{P}_k A - \tilde{P}_k B R^{-1} B^T \tilde{P}_k
$$

letting $h\to0$ we see that $\tilde{P}_k\to P_{kh}$, where

$$
-\dot{P} = Q + A^T P + P A - P B R^{-1} B^T P
$$

similarly, we have

$$
\tilde{K}_k = -(\tilde{R} + \tilde{B}^T \tilde{P}_{k+1} \tilde{B})^{-1} \tilde{B}^T \tilde{P}_{k+1} \tilde{A}
$$
\n
$$
= -(hR + h^2 B^T \tilde{P}_{k+1} B)^{-1} h B^T \tilde{P}_{k+1} (I + hA)
$$
\n
$$
\to -R^{-1} B^T P_{kh}
$$

as $h \to 0$

Derivation using Lagrange multipliers

pose as constrained problem:

minimize $J=\frac{1}{2}$ subject to $\dot{x}(t) = Ax(t) + Bu(t), \quad t \in [0, T]$ $\frac{1}{2} \int_0^T$ $\int_0^T x(\tau)^TQx(\tau) +u(\tau)^TRu(\tau) \; d\tau +\frac{1}{2}$ $\frac{1}{2}x(T)^T$ $^{T}Q_{f}x(T)$

- $\bullet\,$ optimization variable is *function* $u:[0,T]\rightarrow {\mathbf R}^m$
- $\bullet\,$ infinite number of equality constraints, one for each $t\in [0,T]$

introduce Lagrange multiplier *function* $\lambda: [0,T] \rightarrow \mathbf{R}^n$ and form

$$
L = J + \int_0^T \lambda(\tau)^T (Ax(\tau) + Bu(\tau) - \dot{x}(\tau)) d\tau
$$

Optimality conditions

(note: you need *distribution theory* to really make sense of the derivatives here \dots) from $\nabla_{u(t)}L = Ru(t) + B^T\lambda(t) = 0$ we get $u(t) = -R^{-1}B^T\lambda(t)$ to find $\nabla_{x(t)}L$, we use

$$
\int_0^T \lambda(\tau)^T \dot{x}(\tau) d\tau = \lambda(T)^T x(T) - \lambda(0)^T x(0) - \int_0^T \dot{\lambda}(\tau)^T x(\tau) d\tau
$$

from $\nabla_{x(t)}L = Qx(t) + A^T\lambda(t) + \dot{\lambda}(t) = 0$ we get

$$
\dot{\lambda}(t) = -A^T \lambda(t) - Qx(t)
$$

from
$$
\nabla_{x(T)}L = Q_f x(T) - \lambda(T) = 0
$$
, we get $\lambda(T) = Q_f x(T)$

Continuous time linear quadratic regulator

Co-state equations

optimality conditions are

$$
\dot{x} = Ax + Bu, \quad x(0) = x_0, \qquad \dot{\lambda} = -A^T \lambda - Qx, \quad \lambda(T) = Q_f x(T)
$$

using $u(t) = -R^{-1}B^T\lambda(t)$, can write as

$$
\frac{d}{dt} \left[\begin{array}{c} x(t) \\ \lambda(t) \end{array} \right] = \left[\begin{array}{cc} A & -BR^{-1}B^T \\ -Q & -A^T \end{array} \right] \left[\begin{array}{c} x(t) \\ \lambda(t) \end{array} \right]
$$

- \bullet $2n\times 2n$ matrix above is called *Hamiltonian* for problem
- with conditions $x(0) = x_0$, $\lambda(T) = Q_f x(T)$, called two-point boundary value problem

as in discrete-time case, we can show that $\lambda(t) = P_tx(t)$, where

$$
-\dot{P}_t = A^T P_t + P_t A - P_t B R^{-1} B^T P_t + Q, \qquad P_T = Q_f
$$

in other words, value function P_t gives simple relation between x and λ to show this, we show that $\lambda= P x$ satisfies co-state equation
i $\lambda= \lambda T$) $\hskip 10mm \bigcap \limits_{}^{\sim}$ $\dot{\lambda}=-A^{T}\lambda -Qx$

$$
\dot{\lambda} = \frac{d}{dt}(Px) = \dot{P}x + P\dot{x}
$$

= -(Q + A^TP + PA - PBR⁻¹B^TP)x + P(Ax - BR⁻¹B^T\lambda)
= -Qx - A^TPx + PBR⁻¹B^TPx - PBR⁻¹B^TPx
= -Qx - A^T\lambda

Solving Riccati differential equation via Hamiltonian

the (quadratic) Riccati differential equation

$$
-\dot{P} = A^T P + P A - P B R^{-1} B^T P + Q
$$

and the (linear) Hamiltonian differential equation

$$
\frac{d}{dt} \left[\begin{array}{c} x(t) \\ \lambda(t) \end{array} \right] = \left[\begin{array}{cc} A & -BR^{-1}B^T \\ -Q & -A^T \end{array} \right] \left[\begin{array}{c} x(t) \\ \lambda(t) \end{array} \right]
$$

are closely related

 $\lambda(t)=P_tx(t)$ suggests that P should have the form $P_t=\lambda(t)x(t)^{-1}$ \mathbf{z} L_{max} (but this doesn't make sense unless x and λ are scalars)

consider the Hamiltonian *matrix* (linear) differential equation

$$
\frac{d}{dt} \left[\begin{array}{c} X(t) \\ Y(t) \end{array} \right] = \left[\begin{array}{cc} A & -BR^{-1}B^T \\ -Q & -A^T \end{array} \right] \left[\begin{array}{c} X(t) \\ Y(t) \end{array} \right]
$$

where $X(t), Y(t) \in \mathbf{R}^{n \times n}$

then, $Z(t) = Y(t)X(t)^{-1}$ satisfies Riccati differential equation

$$
-\dot{Z} = A^T Z + Z A - Z B R^{-1} B^T Z + Q
$$

hence we can solve Riccati DE by solving (linear) matrix Hamiltonian DE, with final conditions $X(T) = I$, $Y(T) = Q_f$, and forming $P(t) = Y(t)X(t)^{-1}$

$$
\dot{Z} = \frac{d}{dt} Y X^{-1}
$$

= $\dot{Y} X^{-1} - Y X^{-1} \dot{X} X^{-1}$
= $(-QX - A^{T}Y)X^{-1} - YX^{-1} (AX - BR^{-1}B^{T}Y) X^{-1}$
= $-Q - A^{T}Z - ZA + ZBR^{-1}B^{T}Z$

where we use two identities:

$$
\bullet \ \frac{d}{dt}\left(F(t)G(t)\right) = \dot{F}(t)G(t) + F(t)\dot{G}(t)
$$

•
$$
\frac{d}{dt}(F(t)^{-1}) = -F(t)^{-1}\dot{F}(t)F(t)^{-1}
$$

Infinite horizon LQR

we now consider the infinite horizon cost function

$$
J = \int_0^\infty x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau
$$

we define the value function as

$$
V(z) = \min_{u} \int_0^{\infty} x(\tau)^T Q x(\tau) + u(\tau)^T R u(\tau) d\tau
$$

subject to $x(0) = z$, $\dot{x} = Ax + Bu$

we assume that (A,B) is controllable, so V is finite for all z can show that V is quadratic: $V(z) = z^T P z$, where $P = P^T \geq 0$

Continuous time linear quadratic regulator

optimal u is $u(t) = Kx(t)$, where $K = -R^{-1}B^{T}P$ $(i.e., a constant linear state feedback)$

HJ equation is ARE

$$
Q + A^T P + P A - P B R^{-1} B^T P = 0
$$

which together with $P\geq 0$ characterizes P

can solve as limiting value of Riccati DE, or via direct method

Closed-loop system

with K LQR optimal state feedback gain, closed-loop system is

$$
\dot{x} = Ax + Bu = (A + BK)x
$$

fact: closed-loop system is stable when (Q, A) observable and (A, B) controllable

we denote eigenvalues of $A+BK$, called *closed-loop eigenvalues*, as
 $\lambda_1, \ldots, \lambda_n$

with assumptions above, $\Re{\lambda_i} < 0$

Solving ARE via Hamiltonian

$$
\begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ P \end{bmatrix} = \begin{bmatrix} A - BR^{-1}B^T P \\ -Q - A^T P \end{bmatrix} = \begin{bmatrix} A + BK \\ -Q - A^T P \end{bmatrix}
$$

and so

$$
\begin{bmatrix} I & 0 \ -P & I \end{bmatrix} \begin{bmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I & 0 \\ P & I \end{bmatrix} = \begin{bmatrix} A + BK & -BR^{-1}B^T \\ 0 & -(A + BK)^T \end{bmatrix}
$$

where 0 in lower left corner comes from ARE

note that

$$
\left[\begin{array}{cc} I & 0 \\ P & I \end{array}\right]^{-1} = \left[\begin{array}{cc} I & 0 \\ -P & I \end{array}\right]
$$

we see that:

- $\bullet\,$ eigenvalues of Hamiltonian H are $\lambda_1,\ldots,\lambda_n$ and $-\lambda_1,\ldots,-\lambda_n$
- hence, closed-loop eigenvalues are the eigenvalues of H with negative
real nast real part

let's assume $A+BK$ is diagonalizable, $\emph{i.e.},$

$$
T^{-1}(A+BK)T=\Lambda=\mathbf{diag}(\lambda_1,\ldots,\lambda_n)
$$

then we have $T^T(-A-BK)^T T^{-T} = -\Lambda$, so

$$
\begin{bmatrix}\nT^{-1} & 0 \\
0 & T^T\n\end{bmatrix}\n\begin{bmatrix}\nA + BK & -BR^{-1}B^T \\
0 & -(A + BK)^T\n\end{bmatrix}\n\begin{bmatrix}\nT & 0 \\
0 & T^{-T}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\n\Lambda & -T^{-1}BR^{-1}B^T T^{-T} \\
0 & -\Lambda\n\end{bmatrix}
$$

putting it together we get

$$
\begin{bmatrix}\nT^{-1} & 0 \\
0 & T^T\n\end{bmatrix}\n\begin{bmatrix}\nI & 0 \\
-P & I\n\end{bmatrix}\nH\n\begin{bmatrix}\nI & 0 \\
P & I\n\end{bmatrix}\n\begin{bmatrix}\nT & 0 \\
0 & T^{-T}\n\end{bmatrix}
$$
\n
$$
=\n\begin{bmatrix}\nT^{-1} & 0 \\
-T^TP & T^T\n\end{bmatrix}\nH\n\begin{bmatrix}\nT & 0 \\
PT & T^{-T}\n\end{bmatrix}
$$
\n
$$
=\n\begin{bmatrix}\n\Lambda & -T^{-1}BR^{-1}BTT^{-T} \\
0 & -\Lambda\n\end{bmatrix}
$$

and so

$$
H\left[\begin{array}{c} T \\ PT \end{array}\right] = \left[\begin{array}{c} T \\ PT \end{array}\right] \Lambda
$$

thus, the n n columns of $\left[\begin{array}{c} T \ P T \end{array} \right]$ are the eigenvectors of H associated with the stable eigenvalues $\lambda_1,\ldots,\lambda_n$

Solving ARE via Hamiltonian

- $\bullet\,$ find eigenvalues of H , and let $\lambda_1,\ldots,\lambda_n$ (there are exactly n stable and n unstable ones) $_n$ denote the n stable ones
- $\bullet\,$ find associated eigenvectors v_1,\ldots,v_n , and partition as

$$
\left[\begin{array}{ccc}v_1 & \cdots & v_n\end{array}\right] = \left[\begin{array}{c}X\\Y\end{array}\right] \in \mathbf{R}^{2n \times n}
$$

 \bullet $P= Y X^{-1}$ is unique PSD solution of the ARE

(this is very close to the method used in practice, which does not require $A+BK$ to be diagonalizable)