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Lecture 4
Continuous time linear quadratic regulator

e continuous-time LQR problem

e dynamic programming solution

e Hamiltonian system and two point boundary value problem
e infinite horizon LQR

e direct solution of ARE via Hamiltonian



Continuous-time LQR problem
continuous-time system & = Az + Bu, x(0) = xg

problem: choose u : [0,7] — R™ to minimize

J = /0 (.CC(T)TQCE(T) + u(T)TRu(T)) dr + x(T)TQfx(T)

e I'is time horizon

e Q=0Q">0,Q;= Q? >0, R = R" > 0 are state cost, final state
cost, and input cost matrices

.. . an infinite-dimensional problem: (trajectory u : [0,T] — R™ is
variable)
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Dynamic programming solution

we'll solve LQR problem using dynamic programming

for 0 <t < T we define the value function V; : R” — R by

Vi(z) = min/t (x(T)TQa:(T) -+ u(T)TRu(T)) dr + :I:(T)TQf:z:(T)

u

subject to z(t) = z, © = Ax + Bu

e minimum is taken over all possible signals u : [t,7] — R™

e Vi(z) gives the minimum LQR cost-to-go, starting from state z at time ¢

o Vr(z)=21Q;z
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fact: V; is quadratic, i.e., Vi(2) = 2T P,z, where P, = PtT >0

similar to discrete-time case:

e P; can be found from a differential equation running backward in time
fromt="T

e the LQR optimal u is easily expressed in terms of P,
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we start with z(t) = z

let's take u(t) = w € R™, a constant, over the time interval [t,t + h],
where A > 0 is small

cost incurred over [t,t + h] is

t4h
/ ' (z(1)" Qz(7) + w' Rw) dr =~ h(z' Qz + w" Rw)

and we end up at z(t + h) = z 4+ h(Az + Bw)
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min-cost-to-go from where we land is approximately

Vien(z + h(Az + Bw))
= (24 h(Az+ Bw))' Py (2 + h(Az + Bw))
(z 4+ h(Az + Bw))T (P, + hP,)(z + h(Az + Bw))

2Pz +h ((Az + Bw)!' Pz + 21 P,(Az + Bw) + ZTPtZ)

Q

Q

(dropping h? and higher terms)

cost incurred plus min-cost-to-go is approximately

' Poz+h (zTQz + w! Rw + (Az + Bw)' P,z 4+ 21 P.(Az + Bw) + zTPtz)

minimize over w to get (approximately) optimal w:

2hw! R+ 2hz"'P,B = 0
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SO
w*=—R'B'P,2

thus optimal u is time-varying linear state feedback:

Uge(t) = Kz (t), K,=-R'B'P,
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HJ equation

now let's substitute w* into HJ equation:

TPz~ 2T Pzt
+h (ZTQZ + w*t Rw* + (Az + Bw*)T P,z + 21 P,(Az + Bw*) + zTPtz)

yields, after simplification,
—P,=A"P,+ PA— PBR'BTP,+Q

which is the Riccati differential equation for the LQR problem

we can solve it (numerically) using the final condition Pr = )y
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Summary of cts-time LQR solution via DP

1. solve Riccati differential equation
—P,=A"P,+ PA— P.BR'BTP, +Q, Pr=Q;

(backward in time)

2. optimal u is w(t) = Kyx(t), Ky := —R™'BT P,

DP method readily extends to time-varying A, B, (), R, and tracking
problem
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Steady-state regulator
usually P; rapidly converges as t decreases below T
limit Py satisfies (cts-time) algebraic Riccati equation (ARE)
AP+ PA—-PBR 'B'P+Q =0
a quadratic matrix equation

e P, can be found by (numerically) integrating the Riccati differential
equation, or by direct methods

e for t not close to horizon T, LQR optimal input is approximately a
linear, constant state feedback

u(t) = Kez(t), Ky = —R 'B'P,
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Derivation via discretization

let’s discretize using small step size h > 0, with Nh =T

2((k + 1)h) = z(kh) + hi:(kh) = (I + hA)z(kh) + hBu(kh)

N — 1
g 2(kh)" Qz(kh) + u(kh)” Ru(kh)) + %x(N )" Qs (Nh)
k:O

this yields a discrete-time LQR problem, with parameters

~ ~ ~ ~

A=I+hA, B=hB, Q=hQ, R=hR,  Q;=Qy
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solution to discrete-time LQR problem is u(kh) = Kz (kh),
Rp= (Rt BBy B) BT Pyt A
P, =Q+AT"P,A— ATP,B(R+ BTP,B)"'BTP,A
substituting and keeping only A" and h' terms yields
Pi._1=hQ+ P. + hATP, + hP,A — hP,BR™'BT P,

which is the same as

1 - _ . . . .
— (P~ Pio1) = Q+ ATP, + P,A - P,BR™'BT P,

letting h — 0 we see that f’k — Py, where

—P=Q+ AP+ PA—-PBR'BTP
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similarly, we have

K, = —(R + BTPk+1B)_1BTPk+1A
—(hR+ h*BTP,.1B) 'hBT P, 1 (I + hA)
— —R_lBTth

as h — 0
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Derivation using Lagrange multipliers

pose as constrained problem:

minimize =5 fo (M) TQx(7) + u(r)T Ru(r) dr + 32(T)TQ sx(T)
subject to ZC( ) = Aa;( )+ Bu(t), te]l0,T]

e optimization variable is function u : [0,T] — R™

e infinite number of equality constraints, one for each ¢t € [0, 7]

introduce Lagrange multiplier function X\ : [0,7] — R™ and form

L=J —|—/0 M) (Az (1) + Bu(r) — (7)) dr
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Optimality conditions

(note: you need distribution theory to really make sense of the derivatives here . . . )
from VL = Ru(t) + B A(t) = 0 we get u(t) = —R~'BTA(¢)

to find V4L, we use
/o M) a(r) dr = NT) 2(T) — X(0)2(0) — /o }\(T)Tx(T) dr
from VL = Qu(t) + ATA(t) + A(t) =0 we get
At) = —ATA@) — Qxz(t)

from VoL = Qpx(T) — MT') = 0, we get \(T') = Qx(T)
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Co-state equations

optimality conditions are

t = Az + Bu, x(0) = x, A= —ATXA—Qz, \NT)=Qx(T)

using u(t) = —R™I1BT\(t), can write as

ARt R

e 2n X 2n matrix above is called Hamiltonian for problem

e with conditions x(0) = zg, A(T) = Qx(T"), called two-point boundary
value problem
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as in discrete-time case, we can show that A(t) = Pyx(t), where

—P=ATP,+ PA—-PBR'BTP,+Q, Pr=Qy

in other words, value function P; gives simple relation between x and A

to show this, we show that A = P satisfies co-state equation
A= —AT)\—Qx

. d .
A= g(Pa:) = Px + Pz

= —(Q+A"P+PA—PBR 'B'"P)x+ P(Ax — BR™'B"\)
= —Qxr— A'"Pzx+PBR 'B'Px - PBR'B'Px
= —Qz— A"\
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Solving Riccati differential equation via Hamiltonian

the (quadratic) Riccati differential equation
—_P=ATP+ PA—PBR 'BTP+Q
and the (linear) Hamiltonian differential equation

][4 ]

are closely related

A(t) = Pyx(t) suggests that P should have the form P, = A\(t)xz(t)™?
(but this doesn't make sense unless & and \ are scalars)
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consider the Hamiltonian matrix (linear) differential equation

d [X(t) ] :[ A —BR—lBT] [X(t)]

dt | Y(t) -Q A

where X (¢), Y(t) € R®™"

then, Z(t) = Y (t) X (t)~! satisfies Riccati differential equation

—Z=ATZ+ZA—-ZBR'BTZ+Q

hence we can solve Riccati DE by solving (linear) matrix Hamiltonian DE,
with final conditions X (7T') = I, Y(T') = Qy, and forming
Pt)y=Y(#)X(t)*
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. d
Z = —YXxX!
dt

= YX'-vyX1xx!
= (-QX-A"Y)X'-YX ' (AX -BR'B'Y) X!
= —Q-A'Z-7ZA+ZBR Bz

where we use two identities:

. %(F(t)@(t)) _ F()G() + F()C()
d “1y —1 —1
¢ - (F(t)™') = —F@t)""Ft)F(t)
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Infinite horizon LQR

we now consider the infinite horizon cost function

J:/O (1) Qx(7) + u(r)" Ru(T) dr

we define the value function as

V(2z) = min /OOO (7)1 Qx(7) + u(t) Ru(r) dr

u

subject to x(0) = 2z, + = Ax + Bu
we assume that (A, B) is controllable, so V is finite for all z

can show that V' is quadratic: V(z) = 2! Pz, where P = P >0
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optimal u is u(t) = Kx(t), where K = —R™'B1P
(i.e., a constant linear state feedback)

HJ equation is ARE
Q+ AP+ PA—PBR'BTP =0

which together with P > 0 characterizes P

can solve as limiting value of Riccati DE, or via direct method
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Closed-loop system

with K LQR optimal state feedback gain, closed-loop system is

t=Ax+ Bu=(A+ BK)x

fact: closed-loop system is stable when (@), A) observable and (A, B)
controllable

we denote eigenvalues of A + BK, called closed-loop eigenvalues, as
Aly ooy Ap

with assumptions above, £\; < 0
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Solving ARE via Hamiltonian

[ A+BK

[t

A -BR'BT1[I] [A-BR'BTP
—Q AT P|T| —Q-4Tp ]

and so

I 0 A —BR'BT|[I 0] [A+BK —BR BT
P I||-Q AT P Il 0 -4A+£HQT]

where 0 in lower left corner comes from ARE

L

note that
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we see that:

e cigenvalues of Hamiltonian H are A\q,..., A, and —\q,..., =)\,

e hence, closed-loop eigenvalues are the eigenvalues of H with negative
real part
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let's assume A + BK is diagonalizable, i.e.,
T YA+ BK)T = A =diag(\1,..., \n)
then we have T (—A — BK)!'T~1 = —A, so

[T—l 0 ][A+BK —BR™'B? ][T 0 ]

0 77 0 —(A+BK)T || 0 T°7
[ A T 'BRBTTT
~|o —A
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putting it together we get

T-1 0 I 0 i I 0ollT O
o T7T P I prIr|lo 7
I R A gl T 0 ]
I A A rPT T-T |
A —T—lBR—lBTT—T]

and so - -
#ler = e |2
T : : :
thus, the n columns of ] are the eigenvectors of H associated with
A

PT

the stable eigenvalues \q,..., A\,
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Solving ARE via Hamiltonian

e find eigenvalues of H, and let A\q,..., )\, denote the n stable ones
(there are exactly n stable and n unstable ones)

e find associated eigenvectors vq,...,v,, and partition as
X
|:f01 .« o vn}zlyl€R2an

e P =YX !is unique PSD solution of the ARE

(this is very close to the method used in practice, which does not require
A+ BK to be diagonalizable)
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