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Lecture 4

Continuous time linear quadratic regulator

• continuous-time LQR problem

• dynamic programming solution

• Hamiltonian system and two point boundary value problem

• infinite horizon LQR

• direct solution of ARE via Hamiltonian
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Continuous-time LQR problem

continuous-time system ẋ = Ax + Bu, x(0) = x0

problem: choose u : [0, T ] → Rm to minimize

J =

∫ T

0

(

x(τ)TQx(τ) + u(τ)TRu(τ)
)

dτ + x(T )TQfx(T )

• T is time horizon

• Q = QT ≥ 0, Qf = QT
f ≥ 0, R = RT > 0 are state cost, final state

cost, and input cost matrices

. . . an infinite-dimensional problem: (trajectory u : [0, T ] → Rm is
variable)
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Dynamic programming solution

we’ll solve LQR problem using dynamic programming

for 0 ≤ t ≤ T we define the value function Vt : Rn
→ R by

Vt(z) = min
u

∫ T

t

(

x(τ)TQx(τ) + u(τ)TRu(τ)
)

dτ + x(T )TQfx(T )

subject to x(t) = z, ẋ = Ax + Bu

• minimum is taken over all possible signals u : [t, T ] → Rm

• Vt(z) gives the minimum LQR cost-to-go, starting from state z at time t

• VT (z) = zTQfz
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fact: Vt is quadratic, i.e., Vt(z) = zTPtz, where Pt = PT
t ≥ 0

similar to discrete-time case:

• Pt can be found from a differential equation running backward in time
from t = T

• the LQR optimal u is easily expressed in terms of Pt
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we start with x(t) = z

let’s take u(t) = w ∈ Rm, a constant, over the time interval [t, t + h],
where h > 0 is small

cost incurred over [t, t + h] is

∫ t+h

t

(

x(τ)TQx(τ) + wTRw
)

dτ ≈ h(zTQz + wTRw)

and we end up at x(t + h) ≈ z + h(Az + Bw)
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min-cost-to-go from where we land is approximately

Vt+h(z + h(Az + Bw))

= (z + h(Az + Bw))TPt+h(z + h(Az + Bw))

≈ (z + h(Az + Bw))T (Pt + hṖt)(z + h(Az + Bw))

≈ zTPtz + h
(

(Az + Bw)TPtz + zTPt(Az + Bw) + zT Ṗtz
)

(dropping h2 and higher terms)

cost incurred plus min-cost-to-go is approximately

zTPtz+h
(

zTQz + wTRw + (Az + Bw)TPtz + zTPt(Az + Bw) + zT Ṗtz
)

minimize over w to get (approximately) optimal w:

2hwTR + 2hzTPtB = 0
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so
w∗ = −R−1BTPtz

thus optimal u is time-varying linear state feedback:

ulqr(t) = Ktx(t), Kt = −R−1BTPt
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HJ equation

now let’s substitute w∗ into HJ equation:

zTPtz ≈ zTPtz+

+h
(

zTQz + w∗TRw∗ + (Az + Bw∗)TPtz + zTPt(Az + Bw∗) + zT Ṗtz
)

yields, after simplification,

−Ṗt = ATPt + PtA − PtBR−1BTPt + Q

which is the Riccati differential equation for the LQR problem

we can solve it (numerically) using the final condition PT = Qf
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Summary of cts-time LQR solution via DP

1. solve Riccati differential equation

−Ṗt = ATPt + PtA − PtBR−1BTPt + Q, PT = Qf

(backward in time)

2. optimal u is ulqr(t) = Ktx(t), Kt := −R−1BTPt

DP method readily extends to time-varying A, B, Q, R, and tracking
problem
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Steady-state regulator

usually Pt rapidly converges as t decreases below T

limit Pss satisfies (cts-time) algebraic Riccati equation (ARE)

ATP + PA − PBR−1BTP + Q = 0

a quadratic matrix equation

• Pss can be found by (numerically) integrating the Riccati differential
equation, or by direct methods

• for t not close to horizon T , LQR optimal input is approximately a
linear, constant state feedback

u(t) = Kssx(t), Kss = −R−1BTPss
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Derivation via discretization

let’s discretize using small step size h > 0, with Nh = T

x((k + 1)h) ≈ x(kh) + hẋ(kh) = (I + hA)x(kh) + hBu(kh)

J ≈
h

2

N−1
∑

k=0

(

x(kh)TQx(kh) + u(kh)TRu(kh)
)

+
1

2
x(Nh)TQfx(Nh)

this yields a discrete-time LQR problem, with parameters

Ã = I + hA, B̃ = hB, Q̃ = hQ, R̃ = hR, Q̃f = Qf
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solution to discrete-time LQR problem is u(kh) = K̃kx(kh),

K̃k = −(R̃ + B̃T P̃k+1B̃)−1B̃T P̃k+1Ã

P̃k−1 = Q̃ + ÃT P̃kÃ − ÃT P̃kB̃(R̃ + B̃T P̃kB̃)−1B̃T P̃kÃ

substituting and keeping only h0 and h1 terms yields

P̃k−1 = hQ + P̃k + hAT P̃k + hP̃kA − hP̃kBR−1BT P̃k

which is the same as

−
1

h
(P̃k − P̃k−1) = Q + AT P̃k + P̃kA − P̃kBR−1BT P̃k

letting h → 0 we see that P̃k → Pkh, where

−Ṗ = Q + ATP + PA − PBR−1BTP
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similarly, we have

K̃k = −(R̃ + B̃T P̃k+1B̃)−1B̃T P̃k+1Ã

= −(hR + h2BT P̃k+1B)−1hBT P̃k+1(I + hA)

→ −R−1BTPkh

as h → 0
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Derivation using Lagrange multipliers

pose as constrained problem:

minimize J = 1
2

∫ T

0
x(τ)TQx(τ) + u(τ)TRu(τ) dτ + 1

2x(T )TQfx(T )

subject to ẋ(t) = Ax(t) + Bu(t), t ∈ [0, T ]

• optimization variable is function u : [0, T ] → Rm

• infinite number of equality constraints, one for each t ∈ [0, T ]

introduce Lagrange multiplier function λ : [0, T ] → Rn and form

L = J +

∫ T

0

λ(τ)T (Ax(τ) + Bu(τ) − ẋ(τ)) dτ
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Optimality conditions

(note: you need distribution theory to really make sense of the derivatives here . . . )

from ∇u(t)L = Ru(t) + BTλ(t) = 0 we get u(t) = −R−1BTλ(t)

to find ∇x(t)L, we use

∫ T

0

λ(τ)T ẋ(τ) dτ = λ(T )Tx(T ) − λ(0)Tx(0) −

∫ T

0

λ̇(τ)Tx(τ) dτ

from ∇x(t)L = Qx(t) + ATλ(t) + λ̇(t) = 0 we get

λ̇(t) = −ATλ(t) − Qx(t)

from ∇x(T )L = Qfx(T ) − λ(T ) = 0, we get λ(T ) = Qfx(T )
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Co-state equations

optimality conditions are

ẋ = Ax + Bu, x(0) = x0, λ̇ = −ATλ − Qx, λ(T ) = Qfx(T )

using u(t) = −R−1BTλ(t), can write as

d

dt

[

x(t)
λ(t)

]

=

[

A −BR−1BT

−Q −AT

] [

x(t)
λ(t)

]

• 2n × 2n matrix above is called Hamiltonian for problem

• with conditions x(0) = x0, λ(T ) = Qfx(T ), called two-point boundary

value problem
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as in discrete-time case, we can show that λ(t) = Ptx(t), where

−Ṗt = ATPt + PtA − PtBR−1BTPt + Q, PT = Qf

in other words, value function Pt gives simple relation between x and λ

to show this, we show that λ = Px satisfies co-state equation
λ̇ = −ATλ − Qx

λ̇ =
d

dt
(Px) = Ṗ x + Pẋ

= −(Q + ATP + PA − PBR−1BTP )x + P (Ax − BR−1BTλ)

= −Qx − ATPx + PBR−1BTPx − PBR−1BTPx

= −Qx − ATλ
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Solving Riccati differential equation via Hamiltonian

the (quadratic) Riccati differential equation

−Ṗ = ATP + PA − PBR−1BTP + Q

and the (linear) Hamiltonian differential equation

d

dt

[

x(t)
λ(t)

]

=

[

A −BR−1BT

−Q −AT

] [

x(t)
λ(t)

]

are closely related

λ(t) = Ptx(t) suggests that P should have the form Pt = λ(t)x(t)−1

(but this doesn’t make sense unless x and λ are scalars)
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consider the Hamiltonian matrix (linear) differential equation

d

dt

[

X(t)
Y (t)

]

=

[

A −BR−1BT

−Q −AT

] [

X(t)
Y (t)

]

where X(t), Y (t) ∈ Rn×n

then, Z(t) = Y (t)X(t)−1 satisfies Riccati differential equation

−Ż = ATZ + ZA − ZBR−1BTZ + Q

hence we can solve Riccati DE by solving (linear) matrix Hamiltonian DE,
with final conditions X(T ) = I, Y (T ) = Qf , and forming
P (t) = Y (t)X(t)−1
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Ż =
d

dt
Y X−1

= Ẏ X−1 − Y X−1ẊX−1

= (−QX − ATY )X−1 − Y X−1
(

AX − BR−1BTY
)

X−1

= −Q − ATZ − ZA + ZBR−1BTZ

where we use two identities:

•
d

dt
(F (t)G(t)) = Ḟ (t)G(t) + F (t)Ġ(t)

•
d

dt

(

F (t)−1
)

= −F (t)−1Ḟ (t)F (t)−1
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Infinite horizon LQR

we now consider the infinite horizon cost function

J =

∫

∞

0

x(τ)TQx(τ) + u(τ)TRu(τ) dτ

we define the value function as

V (z) = min
u

∫

∞

0

x(τ)TQx(τ) + u(τ)TRu(τ) dτ

subject to x(0) = z, ẋ = Ax + Bu

we assume that (A, B) is controllable, so V is finite for all z

can show that V is quadratic: V (z) = zTPz, where P = PT ≥ 0
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optimal u is u(t) = Kx(t), where K = −R−1BTP

(i.e., a constant linear state feedback)

HJ equation is ARE

Q + ATP + PA − PBR−1BTP = 0

which together with P ≥ 0 characterizes P

can solve as limiting value of Riccati DE, or via direct method
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Closed-loop system

with K LQR optimal state feedback gain, closed-loop system is

ẋ = Ax + Bu = (A + BK)x

fact: closed-loop system is stable when (Q,A) observable and (A, B)
controllable

we denote eigenvalues of A + BK, called closed-loop eigenvalues, as
λ1, . . . , λn

with assumptions above, ℜλi < 0
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Solving ARE via Hamiltonian

[

A −BR−1BT

−Q −AT

] [

I

P

]

=

[

A − BR−1BTP

−Q − ATP

]

=

[

A + BK

−Q − ATP

]

and so

[

I 0
−P I

] [

A −BR−1BT

−Q −AT

] [

I 0
P I

]

=

[

A + BK −BR−1BT

0 −(A + BK)T

]

where 0 in lower left corner comes from ARE

note that
[

I 0
P I

]

−1

=

[

I 0
−P I

]
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we see that:

• eigenvalues of Hamiltonian H are λ1, . . . , λn and −λ1, . . . ,−λn

• hence, closed-loop eigenvalues are the eigenvalues of H with negative
real part
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let’s assume A + BK is diagonalizable, i.e.,

T−1(A + BK)T = Λ = diag(λ1, . . . , λn)

then we have TT (−A − BK)TT−T = −Λ, so

[

T−1 0
0 TT

] [

A + BK −BR−1BT

0 −(A + BK)T

] [

T 0
0 T−T

]

=

[

Λ −T−1BR−1BTT−T

0 −Λ

]
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putting it together we get

[

T−1 0
0 TT

] [

I 0
−P I

]

H

[

I 0
P I

] [

T 0
0 T−T

]

=

[

T−1 0
−TTP TT

]

H

[

T 0
PT T−T

]

=

[

Λ −T−1BR−1BTT−T

0 −Λ

]

and so

H

[

T

PT

]

=

[

T

PT

]

Λ

thus, the n columns of

[

T

PT

]

are the eigenvectors of H associated with

the stable eigenvalues λ1, . . . , λn
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Solving ARE via Hamiltonian

• find eigenvalues of H, and let λ1, . . . , λn denote the n stable ones
(there are exactly n stable and n unstable ones)

• find associated eigenvectors v1, . . . , vn, and partition as

[

v1 · · · vn

]

=

[

X

Y

]

∈ R2n×n

• P = Y X−1 is unique PSD solution of the ARE

(this is very close to the method used in practice, which does not require
A + BK to be diagonalizable)
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