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Lecture 3

Infinite horizon linear quadratic regulator

• infinite horizon LQR problem

• dynamic programming solution

• receding horizon LQR control

• closed-loop system
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Infinite horizon LQR problem

discrete-time system xt+1 = Axt + But, x0 = xinit

problem: choose u0, u1, . . . to minimize

J =
∞
∑

τ=0

(

xT
τ Qxτ + uT

τ Ruτ

)

with given constant state and input weight matrices

Q = QT
≥ 0, R = RT > 0

. . . an infinite dimensional problem
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problem: it’s possible that J = ∞ for all input sequences u0, . . .

xt+1 = 2xt + 0ut, xinit = 1

let’s assume (A, B) is controllable

then for any xinit there’s an input sequence

u0, . . . , un−1, 0, 0, . . .

that steers x to zero at t = n, and keeps it there

for this u, J < ∞

and therefore, minu J < ∞ for any xinit
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Dynamic programming solution

define value function V : Rn
→ R

V (z) = min
u0,...

∞
∑

τ=0

(

xT
τ Qxτ + uT

τ Ruτ

)

subject to x0 = z, xτ+1 = Axτ + Buτ

• V (z) is the minimum LQR cost-to-go, starting from state z

• doesn’t depend on time-to-go, which is always ∞; infinite horizon
problem is shift invariant
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Hamilton-Jacobi equation

fact: V is quadratic, i.e., V (z) = zTPz, where P = PT ≥ 0
(can be argued directly from first principles)

HJ equation:

V (z) = min
w

(

zTQz + wTRw + V (Az + Bw)
)

or
zTPz = min

w

(

zTQz + wTRw + (Az + Bw)TP (Az + Bw)
)

minimizing w is w∗ = −(R + BTPB)−1BTPAz

so HJ equation is

zTPz = zTQz + w∗TRw∗ + (Az + Bw∗)TP (Az + Bw∗)

= zT
(

Q + ATPA − ATPB(R + BTPB)−1BTPA
)

z
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this must hold for all z, so we conclude that P satisfies the ARE

P = Q + ATPA − ATPB(R + BTPB)−1BTPA

and the optimal input is constant state feedback ut = Kxt,

K = −(R + BTPB)−1BTPA

compared to finite-horizon LQR problem,

• value function and optimal state feedback gains are time-invariant

• we don’t have a recursion to compute P ; we only have the ARE
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fact: the ARE has only one positive semidefinite solution P

i.e., ARE plus P = PT ≥ 0 uniquely characterizes value function

consequence: the Riccati recursion

Pk+1 = Q + ATPkA − ATPkB(R + BTPkB)−1BTPkA, P1 = Q

converges to the unique PSD solution of the ARE
(when (A, B) controllable)

(later we’ll see direct methods to solve ARE)

thus, infinite-horizon LQR optimal control is same as steady-state finite
horizon optimal control
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Receding-horizon LQR control

consider cost function

Jt(ut, . . . , ut+T−1) =

τ=t+T
∑

τ=t

(

xT
τ Qxτ + uT

τ Ruτ

)

• T is called horizon

• same as infinite horizon LQR cost, truncated after T steps into future

if (u∗

t , . . . , u
∗

t+T−1) minimizes Jt, u∗

t is called (T -step ahead) optimal

receding horizon control

in words:

• at time t, find input sequence that minimizes T -step-ahead LQR cost,
starting at current time

• then use only the first input
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example: 1-step ahead receding horizon control

find ut, ut+1 that minimize

Jt = xT
t Qxt + xT

t+1Qxt+1 + uT
t Rut + uT

t+1Rut+1

first term doesn’t matter; optimal choice for ut+1 is 0; optimal ut

minimizes

xT
t+1Qxt+1 + uT

t Rut = (Axt + But)
TQ(Axt + But) + uT

t Rut

thus, 1-step ahead receding horizon optimal input is

ut = −(R + BTQB)−1BTQAxt

. . . a constant state feedback
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in general, optimal T -step ahead LQR control is

ut = KTxt, KT = −(R + BTPTB)−1BTPTA

where

P1 = Q, Pi+1 = Q + ATPiA − ATPiB(R + BTPiB)−1BTPiA

i.e.: same as the optimal finite horizon LQR control, T − 1 steps before
the horizon N

• a constant state feedback

• state feedback gain converges to infinite horizon optimal as horizon
becomes long (assuming controllability)
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Closed-loop system

suppose K is LQR-optimal state feedback gain

xt+1 = Axt + But = (A + BK)xt

is called closed-loop system

(xt+1 = Axt is called open-loop system)

is closed-loop system stable? consider

xt+1 = 2xt + ut, Q = 0, R = 1

optimal control is ut = 0xt, i.e., closed-loop system is unstable

fact: if (Q,A) observable and (A, B) controllable, then closed-loop system
is stable
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