EE363 Winter 2008-09

Lecture 3 Infinite horizon linear quadratic regulator

- infinite horizon LQR problem
- dynamic programming solution
- receding horizon LQR control
- closed-loop system

Infinite horizon LQR problem

discrete-time system $x_{t+1} = Ax_t + Bu_t$, $x_0 = x^{\text{init}}$

problem: choose u_0, u_1, \ldots to minimize

$$J = \sum_{\tau=0}^{\infty} \left(x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau} \right)$$

with given constant state and input weight matrices

$$Q = Q^T \ge 0, \qquad R = R^T > 0$$

. . . an *infinite dimensional problem*

problem: it's possible that $J=\infty$ for all input sequences u_0,\ldots

$$x_{t+1} = 2x_t + 0u_t, \qquad x^{\text{init}} = 1$$

let's assume (A,B) is controllable then for any $x^{\rm init}$ there's an input sequence

$$u_0, \ldots, u_{n-1}, 0, 0, \ldots$$

that steers x to zero at t=n, and keeps it there

for this u, $J < \infty$

and therefore, $\min_u J < \infty$ for any x^{init}

Dynamic programming solution

define value function $V: \mathbb{R}^n \to \mathbb{R}$

$$V(z) = \min_{u_0, \dots} \sum_{\tau=0}^{\infty} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau})$$

subject to $x_0 = z$, $x_{\tau+1} = Ax_{\tau} + Bu_{\tau}$

- ullet V(z) is the minimum LQR cost-to-go, starting from state z
- doesn't depend on time-to-go, which is always ∞ ; infinite horizon problem is *shift invariant*

Hamilton-Jacobi equation

fact: V is quadratic, i.e., $V(z)=z^TPz$, where $P=P^T\geq 0$ (can be argued directly from first principles)

HJ equation:

$$V(z) = \min_{w} \left(z^{T} Q z + w^{T} R w + V (A z + B w) \right)$$

or

$$z^T P z = \min_{w} \left(z^T Q z + w^T R w + (Az + Bw)^T P (Az + Bw) \right)$$

minimizing w is $w^* = -(R + B^T P B)^{-1} B^T P A z$

so HJ equation is

$$z^{T}Pz = z^{T}Qz + w^{*T}Rw^{*} + (Az + Bw^{*})^{T}P(Az + Bw^{*})$$
$$= z^{T}(Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA)z$$

this must hold for all z, so we conclude that P satisfies the ARE

$$P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A$$

and the optimal input is constant state feedback $u_t = Kx_t$,

$$K = -(R + B^T P B)^{-1} B^T P A$$

compared to finite-horizon LQR problem,

- value function and optimal state feedback gains are time-invariant
- we don't have a recursion to compute P; we only have the ARE

fact: the ARE has only one positive semidefinite solution P

i.e., ARE plus $P = P^T \ge 0$ uniquely characterizes value function

consequence: the Riccati recursion

$$P_{k+1} = Q + A^T P_k A - A^T P_k B (R + B^T P_k B)^{-1} B^T P_k A, \qquad P_1 = Q$$

converges to the unique PSD solution of the ARE (when (A,B) controllable)

(later we'll see direct methods to solve ARE)

thus, infinite-horizon LQR optimal control is same as steady-state finite horizon optimal control

Receding-horizon LQR control

consider cost function

$$J_t(u_t, \dots, u_{t+T-1}) = \sum_{\tau=t}^{\tau=t+T} (x_{\tau}^T Q x_{\tau} + u_{\tau}^T R u_{\tau})$$

- T is called horizon
- ullet same as infinite horizon LQR cost, truncated after T steps into future

if $(u_t^*, \dots, u_{t+T-1}^*)$ minimizes J_t , u_t^* is called (T-step ahead) optimal receding horizon control

in words:

- ullet at time t, find input sequence that minimizes T-step-ahead LQR cost, starting at current time
- then use only the first input

example: 1-step ahead receding horizon control

find u_t , u_{t+1} that minimize

$$J_{t} = x_{t}^{T} Q x_{t} + x_{t+1}^{T} Q x_{t+1} + u_{t}^{T} R u_{t} + u_{t+1}^{T} R u_{t+1}$$

first term doesn't matter; optimal choice for u_{t+1} is 0; optimal u_t minimizes

$$x_{t+1}^{T}Qx_{t+1} + u_{t}^{T}Ru_{t} = (Ax_{t} + Bu_{t})^{T}Q(Ax_{t} + Bu_{t}) + u_{t}^{T}Ru_{t}$$

thus, 1-step ahead receding horizon optimal input is

$$u_t = -(R + B^T Q B)^{-1} B^T Q A x_t$$

... a constant state feedback

in general, optimal T-step ahead LQR control is

$$u_t = K_T x_t, K_T = -(R + B^T P_T B)^{-1} B^T P_T A$$

where

$$P_1 = Q,$$
 $P_{i+1} = Q + A^T P_i A - A^T P_i B (R + B^T P_i B)^{-1} B^T P_i A$

 $\it i.e.$: same as the optimal finite horizon LQR control, $\it T-1$ steps before the horizon $\it N$

- a constant state feedback
- state feedback gain converges to infinite horizon optimal as horizon becomes long (assuming controllability)

Closed-loop system

suppose K is LQR-optimal state feedback gain

$$x_{t+1} = Ax_t + Bu_t = (A + BK)x_t$$

is called *closed-loop system*

 $(x_{t+1} = Ax_t \text{ is called open-loop system})$

is closed-loop system stable? consider

$$x_{t+1} = 2x_t + u_t, \qquad Q = 0, \qquad R = 1$$

optimal control is $u_t = 0x_t$, i.e., closed-loop system is unstable

fact: if (Q,A) observable and (A,B) controllable, then closed-loop system is stable