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Lecture 9
The Extended Kalman filter

e Nonlinear filtering
e Extended Kalman filter

e Linearization and random variables
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Nonlinear filtering

e nonlinear Markov model:

Tt41 = f(SUt, wt)7 Yt — g(wt, ’Ut)

— fis (possibly nonlinear) dynamics function

— ¢ is (possibly nonlinear) measurement or output function
- wp, W1, ...,V0,V1,... are independent

— even if w, v Gaussian, = and y need not be

e nonlinear filtering problem: find, e.g.,

5775|t—1 = E(z¢|yo, ..., yt-1), j3t|t = E(x¢|yo, ..., yt)
e general nonlinear filtering solution involves a PDE, and is not practical
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Extended Kalman filter

e extended Kalman filter (EKF) is heuristic for nonlinear filtering problem

e often works well (when tuned properly), but sometimes not
e widely used in practice

e based on

— linearizing dynamics and output functions at current estimate
— propagating an approximation of the conditional expectation and
covariance
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Linearization and random variables

e consider ¢ : R" — R™
e suppose Ex =7, E(x — Z)(z — )1 = X,, and y = ¢(x)
e if X, is small, ¢ is not too nonlinear,

y~=y=o)+ Do(z)(x - T)

e gives approximation for mean and covariance of nonlinear function of
random variable:

g~ ¢(z), Ty~ DoE)T,Do(T)"
e if X, is not small compared to ‘curvature’ of ¢, these estimates are poor
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e a good estimate can be found by Monte Carlo simulation:

Q

1 N
_ —mc __ (7)
7 g = ;:1 (z'")

1 : . T
~ (i)y _ —mc (i)\ _ ~mc
XD (6(=) = 57°) (6(®) - 5™)
where (1) ... 2) are samples from the distribution of z, and N s

large

e another method: use Monte Carlo formulas, with a small number of
nonrandom samples chosen as ‘typical’, e.g., the 90% confidence
ellipsoid semi-axis endpoints

2 = 7 + Bu;, Y, =VAVT
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Example

r~N(0,1), y = exp(x)

(for this case we can compute mean and variance of y exactly)

exact values

linearization

Monte Carlo (N = 10)

Monte Carlo (N = 100)

Sigma points (r =z, £ 1.50,)
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el/2 =1.649 +e2—e=2.161
1.000 1.000

1.385 1.068

1.430 1.776

1.902 2.268
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Extended Kalman filter

e initialization: Zo_1 = To, X(0] — 1) = X

e measurement update

— linearize output function at x = Zy);_1:

dg , .
C = 6—i($t|t—170)
dg , . dg , .
V. = a—g($t|t—1aO)ZUa—g($t|t—1aO)T

— measurement update based on linearization

R R 1
T = Tyg—1 T Zt|t—1CT (CEt|t_1CT T V) e
o (e — 9(53t|t—1> 0))
—1
Dl = -1 — Et|t—1OT (CZt|t_1CT + V) CXije—1
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e time update

— linearize dynamics function at x = Iy,

A

|44

af .

O (a0

of . of ..
a—w(ﬂfﬂtao)zwa—w( t|t70)T

— time update based on linearization

jjt—|—1|t — f(jjﬂta 0)7

e replacing linearization with Monte Carlo yields particle filter

e replacing linearization with sigma-point estimates yields unscented

Kalman filter (UKF)
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Example

e p:, us € R? are position and velocity of vehicle, with (po, ug) ~ N(0,1)

e vehicle dynamics:

0.85 0.15

pt—l—l — pt —|_ O°]-ut7 ut—|—1 — [ _O 1 O 85

]ut‘I'wt

wy are [ID N(0, 1)
e measurements: noisy measurements of distance to 9 points p; € R?

(yt)i = ||lpt — pil| + (ve)s, i=1,...,9,

(v¢); are 1ID N(0,0.3%)
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EKF results

e EKF initialized with £o|_; = 0, (0| — 1) = I, where x = (p, u)

e p; shown as stars; p; as dotted curve; p;; as solid curve

P2

P1
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Current position estimation error

||13t|t — ptH versus ¢
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Current position estimation predicted error

(S(¢|t)11 + Z(t[t)22)*? versus t
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