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Invariant subspaces

suppose A € R"*"™ and V C R" is a subspace
we say that V is A-invariant if AV CV, i.e., veEY — Avey

examples:

e {0} and R™ are always A-invariant
e span{vy,..., v, } is A-invariant, where v; are (right) eigenvectors of A

e if A is block upper triangular,

A [All A12]7

0 A22

|
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with 411 € RTXT, then V = { [ g

z € RT} is A-invariant



Examples from linear systems

o if B € R" ™, then the controllable subspace
R(C)=R([B AB --- A" 'B])
is A-invariant
o if C € RP*", then the unobservable subspace

C
N(O) =N

C A

iIs A-invariant
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Dynamical interpretation

consider system © = Ax

V) is A-invariant if and only if
x(0) eV = z(t)eVforallt >0

(same statement holds for discrete-time system)

Invariant subspaces



A matrix criterion for A-invariance

suppose V is A-invariant

let columns of M € R™™ ¥ span V), i.e.,

since At1 € V), we can express it as

At = x11t1 + - - + Trite

we can do the same for Ats, ..., Aty, which gives

or, simply, AM = MX
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in other words: if R(M) is A-invariant, then there is a matrix X such that
AM = MX

converse is also true: if there is an X such that AM = M X, then R(M)
is A-invariant

now assume M is rank k, i.e., {t1,...,tx} is a basis for V

then every eigenvalue of X is an eigenvalue of A, and the associated
eigenvector is in V = R(M)

if Xu=Au, u+#0, then Mu # 0 and A(Mu) = MXu= \Mu

so the eigenvalues of X are a subset of the eigenvalues of A

more generally: if AM = M X (no assumption on rank of M), then A and
X share at least Rank(M) eigenvalues
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Sylvester equation

the Sylvester equation is AX + XB = C, where A, B, C, X ¢ R"*"
when does this have a solution X for every C?

express as S(X) = C, where S is the linear function S(X) = AX + XB
(S maps R™ " into R"*™ and is called the Sylvester operator)

Into
so the question is: when is S nonsingular?
S is singular if and only if there exists a nonzero X with S(X) =0

this means AX + XB =0, so AX = X(—B), which means A and —B
share at least one eigenvalue (since X # 0)

so we have: if S is singular, then A and —B have a common eigenvalue
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let's show the converse: if A and —B share an eigenvalue, S is singular

suppose
Av = v, w!'B = —\w?, v, w# 0

then with X = vw! we have X # 0 and
S(X)=AX + XB = Avw’ +vw’ B = OQv)w! +v(=xw?) =0

which shows S is singular

so, Sylvestor operator is singular if and only if A and —B have a common
eigenvalue

or: Sylvestor operator is nonsingular if and only if A and —B have no
common eigenvalues
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Uniqueness of stabilizing ARE solution

suppose P is any solution of ARE
AP+ PA+Q—-PBR 'B'P=0

and define K = —R1BTP

we say P is a stabilizing solution of ARE if
A+BK=A-BR'B'P

is stable, i.e., its eigenvalues have negative real part

fact: there is at most one stabilizing solution of the ARE
(which therefore is the one that gives the value function)
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to show this, suppose P; and P, are both stabilizing solutions

subtract AREs to get
A (P, - P) + (P —P,)A—- P BR'B'P,+ BBR 'B'P, =0
rewrite as Sylvester equation
(A+ BKy)' (P, — P) + (P — P)(A+ BK;) =0

since A+ BK5 and A+ BK; are both stable, A+ BK3 and —(A+ BK;)
cannot share any eigenvalues, so we conclude P, — P, =0
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Change of coordinates

suppose V = R(M) is A-invariant, where M € R™™* is rank k

find M € R"*("~%) 5o that [M M] is nonsingular

~

A[MM]:[AMAM]:[MM][)O( 32/]

where

~

with T'= [M M], we have

e [ XY
rtar=[ 5 )|
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in other words: if V is A-invariant we can change coordinates so that

e A becomes block upper triangular in the new coordinates

e ) corresponds to {[ S ]

z € Rk} In the new coordinates
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Revealing the controllable subspace
consider & = Ax + Bu (or ;11 = Axy + Buy) and assume it is not
controllable, so V =R(C) # R"

let columns of M € R¥ be basis for controllable subspace
(e.g., choose k independent columns from C)

let M € R™ (") be such that T = [M M] is nonsingular

then . - -
_ A _ B
T 1AT _ 11 ~12 T 1B — 1
[ 0 Ay |’ 0
S R - O O -
C=T C‘[o o

in the new coordinates the controllable subspace is {(z,0) | z € R"};
(A1, By) is controllable
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we have changed coordinates to reveal the controllable subspace:

U @ 1/s

]./S 5%2

roughly speaking, x; is the controllable part of the state

Y
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Revealing the unobservable subspace

similarly, if (C, A) is not observable, we can change coordinates to obtain

An 0 ] CT=[¢ 0]

T AT =
[ Agr Aao

~ ~

and (C'1, Aq1) is observable
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Popov-Belevitch-Hautus controllability test

PBH controllability criterion: (A, B) is controllable if and only if

Rank [s] — A B =nforall s € C

equivalent to:

(A, B) is uncontrollable if and only if there is a w # 0 with
wh A = \w?, w!B =0

i.e., a left eigenvector is orthogonal to columns of B
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to show it, first assume that w # 0, w! A = \w?!, w!'B =0
then fork=1,...,n—1, wlA*B = \*wTB =0, so

wl' B AB - A" 1Bl =w'C =0

which shows (A, B) not controllable

conversely, suppose (A, B) not controllable

change coordinates as on p.6-15, let z be any left eigenvector of As,, and
define w = (0, 2)

then Wl A = ML, wTB =0

it follows that wf'A = \w?, w B =0, where w = T 1w
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PBH observability test

PBH observability criterion: (C, A) is observable if and only if

sl — A

Rank [ C

]:nforallsec

equivalent to:

(C, A) is unobservable if and only if there is a v # 0 with
Av = M, Cv=0

i.e., a (right) eigenvector is in the nullspace of C
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Observability and controllability of modes

the PBH tests allow us to identify unobservable and uncontrollable modes

the mode associated with right and left eigenvectors v, w is

e uncontrollable if wI'B =0

e unobservable if Cv =0

(classification can be done with repeated eigenvalues, Jordan blocks, but
gets tricky)
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Controllability and linear state feedback

we consider system & = Az + Bu (or x411 = Axy + Buy)

we refer to u = Kx + w as a linear state feedback (with auxiliary input
w), with associated closed-loop system & = (A + BK)x + Bw
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suppose wl A = dw?, w# 0, w!' B =0, i.e., w corresponds to
uncontrollable mode of open loop system

then w! (A + BK) = wl' A+ w! BK = Mw?, i.e., wis also a left
eigenvector of closed-loop system, associated with eigenvalue A

i.e., eigenvalues (and indeed, left eigenvectors) associated with
uncontrollable modes cannot be changed by linear state feedback

conversely, if w is left eigenvector associated with uncontrollable
closed-loop mode, then w is left eigenvector associated with uncontrollable
open-loop mode

in other words: state feedback preserves uncontrollable eigenvalues and the
associated left eigenvectors
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Invariant subspaces and quadratic matrix equations

suppose V = R(M) is A-invariant, where M € R™ ¥ is rank k. so
AM = M X for some X € RF*¥

conformally partition as

A Ago My | | My D%
Agr Aag Mo Mo
A1 My + A1oMy = M X, Ag1 My + Ago My = Mo X

eliminate X from first equation (assuming M; is nonsingular):
X = M Ay My 4 M A My
substituting this into second equation yields

Aoy My + AggMy = MoM Ay My + MoM; Ao M,
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multiply on right by Ml_l:

Agy + Ago MoM T = MyMi Ay + Mo M Aa Mo M

with P = Mng_l, we have

a general quadratic matrix equation

if we take A to be Hamitonian associated with a cts-time LQR problem, we
recover the method of solving ARE via stable eigenvectors of Hamiltonian
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