# Lecture 6 Invariant subspaces

- invariant subspaces
- a matrix criterion
- Sylvester equation
- the PBH controllability and observability conditions
- invariant subspaces, quadratic matrix equations, and the ARE

#### **Invariant subspaces**

suppose  $A \in \mathbb{R}^{n \times n}$  and  $\mathcal{V} \subseteq \mathbb{R}^n$  is a subspace we say that  $\mathcal{V}$  is *A-invariant* if  $A\mathcal{V} \subseteq \mathcal{V}$ , *i.e.*,  $v \in \mathcal{V} \implies Av \in \mathcal{V}$ examples:

- $\{0\}$  and  $\mathbf{R}^n$  are always A-invariant
- span $\{v_1, \ldots, v_m\}$  is A-invariant, where  $v_i$  are (right) eigenvectors of A
- if A is block upper triangular,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix},$$
  
with  $A_{11} \in \mathbf{R}^{r \times r}$ , then  $\mathcal{V} = \left\{ \begin{bmatrix} z \\ 0 \end{bmatrix} \middle| z \in \mathbf{R}^r \right\}$  is A-invariant

#### **Examples from linear systems**

• if  $B \in \mathbf{R}^{n \times m}$ , then the controllable subspace

$$\mathcal{R}(\mathcal{C}) = \mathcal{R}\left( [B \ AB \ \cdots \ A^{n-1}B] \right)$$

#### is A-invariant

• if  $C \in \mathbf{R}^{p \times n}$ , then the unobservable subspace

$$\mathcal{N}(\mathcal{O}) = \mathcal{N}\left( \left[ \begin{array}{c} C \\ \vdots \\ CA^{n-1} \end{array} \right] \right)$$

is A-invariant

## **Dynamical interpretation**

consider system  $\dot{x} = Ax$ 

 $\ensuremath{\mathcal{V}}$  is  $A\mbox{-invariant}$  if and only if

$$x(0) \in \mathcal{V} \implies x(t) \in \mathcal{V} \text{ for all } t \geq 0$$

(same statement holds for discrete-time system)

#### A matrix criterion for A-invariance

suppose  $\mathcal{V}$  is A-invariant

let columns of  $M \in \mathbf{R}^{n imes k}$  span  $\mathcal{V}$ , *i.e.*,

$$\mathcal{V} = \mathcal{R}(M) = \mathcal{R}([t_1 \cdots t_k])$$

since  $At_1 \in \mathcal{V}$ , we can express it as

$$At_1 = x_{11}t_1 + \dots + x_{k1}t_k$$

we can do the same for  $At_2, \ldots, At_k$ , which gives

$$A[t_1 \cdots t_k] = [t_1 \cdots t_k] \begin{bmatrix} x_{11} \cdots x_{1k} \\ \vdots & \vdots \\ x_{k1} \cdots & x_{kk} \end{bmatrix}$$

or, simply, AM = MX

Invariant subspaces

in other words: if  $\mathcal{R}(M)$  is A-invariant, then there is a matrix X such that AM=MX

converse is also true: if there is an X such that AM=MX, then  $\mathcal{R}(M)$  is A-invariant

now assume M is rank k, *i.e.*,  $\{t_1, \ldots, t_k\}$  is a basis for  $\mathcal{V}$ 

then every eigenvalue of X is an eigenvalue of A, and the associated eigenvector is in  $\mathcal{V} = \mathcal{R}(M)$ 

if  $Xu = \lambda u$ ,  $u \neq 0$ , then  $Mu \neq 0$  and  $A(Mu) = MXu = \lambda Mu$ 

so the eigenvalues of X are a subset of the eigenvalues of A

more generally: if AM = MX (no assumption on rank of M), then A and X share at least  $\mathbf{Rank}(M)$  eigenvalues

#### Sylvester equation

the Sylvester equation is AX + XB = C, where  $A, B, C, X \in \mathbb{R}^{n \times n}$ 

when does this have a solution X for every C?

express as S(X) = C, where S is the linear function S(X) = AX + XB(S maps  $\mathbb{R}^{n \times n}$  into  $\mathbb{R}^{n \times n}$  and is called the Sylvester operator)

so the question is: when is S nonsingular?

S is singular if and only if there exists a nonzero X with S(X) = 0

this means AX + XB = 0, so AX = X(-B), which means A and -B share at least one eigenvalue (since  $X \neq 0$ )

so we have: if S is singular, then A and -B have a common eigenvalue

let's show the converse: if A and -B share an eigenvalue, S is singular

suppose

$$Av = \lambda v, \qquad w^T B = -\lambda w^T, \qquad v, \ w \neq 0$$

then with  $X=vw^T$  we have  $X\neq 0$  and

$$S(X) = AX + XB = Avw^T + vw^TB = (\lambda v)w^T + v(-\lambda w^T) = 0$$

which shows S is singular

so, Sylvestor operator is singular if and only if A and -B have a common eigenvalue

or: Sylvestor operator is nonsingular if and only if A and -B have no common eigenvalues

## Uniqueness of stabilizing ARE solution

suppose  $\boldsymbol{P}$  is any solution of ARE

$$A^T P + PA + Q - PBR^{-1}B^T P = 0$$

and define  $K = -R^{-1}B^T P$ 

we say P is a *stabilizing solution* of ARE if

$$A + BK = A - BR^{-1}B^T P$$

is stable, *i.e.*, its eigenvalues have negative real part

**fact:** there is at most one stabilizing solution of the ARE (which therefore is the one that gives the value function)

to show this, suppose  $P_1$  and  $P_2$  are both stabilizing solutions subtract AREs to get

$$A^{T}(P_{1} - P_{2}) + (P_{1} - P_{2})A - P_{1}BR^{-1}B^{T}P_{1} + P_{2}BR^{-1}B^{T}P_{2} = 0$$

rewrite as Sylvester equation

$$(A + BK_2)^T (P_1 - P_2) + (P_1 - P_2)(A + BK_1) = 0$$

since  $A + BK_2$  and  $A + BK_1$  are both stable,  $A + BK_2$  and  $-(A + BK_1)$  cannot share any eigenvalues, so we conclude  $P_1 - P_2 = 0$ 

#### **Change of coordinates**

suppose  $\mathcal{V} = \mathcal{R}(M)$  is A-invariant, where  $M \in \mathbb{R}^{n \times k}$  is rank k find  $\tilde{M} \in \mathbb{R}^{n \times (n-k)}$  so that  $[M \ \tilde{M}]$  is nonsingular

$$A[M \ \tilde{M}] = [AM \ A\tilde{M}] = [M \ \tilde{M}] \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix}$$

where

$$\left[\begin{array}{c}Y\\Z\end{array}\right] = [M \ \tilde{M}]^{-1} A \tilde{M}$$

with  $T = [M \ \tilde{M}]$ , we have

$$T^{-1}AT = \left[ \begin{array}{cc} X & Y \\ 0 & Z \end{array} \right]$$

in other words: if  $\mathcal{V}$  is A-invariant we can change coordinates so that

- A becomes block upper triangular in the new coordinates
- $\mathcal{V}$  corresponds to  $\left\{ \begin{bmatrix} z \\ 0 \end{bmatrix} \middle| z \in \mathbf{R}^k \right\}$  in the new coordinates

#### **Revealing the controllable subspace**

consider  $\dot{x} = Ax + Bu$  (or  $x_{t+1} = Ax_t + Bu_t$ ) and assume it is *not* controllable, so  $\mathcal{V} = \mathcal{R}(\mathcal{C}) \neq \mathbf{R}^n$ 

let columns of  $M \in \mathbf{R}^k$  be basis for controllable subspace (e.g., choose k independent columns from C)

let  $\tilde{M} \in \mathbf{R}^{n \times (n-k)}$  be such that  $T = [M \ \tilde{M}]$  is nonsingular

then

$$T^{-1}AT = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ 0 & \tilde{A}_{22} \end{bmatrix}, \qquad T^{-1}B = \begin{bmatrix} \tilde{B}_1 \\ 0 \end{bmatrix}$$
$$\tilde{C} = T^{-1}C = \begin{bmatrix} \tilde{B}_1 & \cdots & \tilde{A}_{11}^{n-1}\tilde{B}_1 \\ 0 & \cdots & 0 \end{bmatrix}$$

in the new coordinates the controllable subspace is  $\{(z,0) \mid z \in \mathbf{R}^k\}$ ;  $(\tilde{A}_{11}, \tilde{B}_1)$  is controllable

we have changed coordinates to reveal the controllable subspace:



roughly speaking,  $\tilde{x}_1$  is the controllable part of the state

### **Revealing the unobservable subspace**

similarly, if (C, A) is not observable, we can change coordinates to obtain

$$T^{-1}AT = \begin{bmatrix} \tilde{A}_{11} & 0\\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}, \qquad CT = \begin{bmatrix} \tilde{C}_1 & 0 \end{bmatrix}$$

and  $(\tilde{C}_1, \tilde{A}_{11})$  is observable

### **Popov-Belevitch-Hautus controllability test**

PBH controllability criterion: (A, B) is controllable if and only if

**Rank** [sI - A B] = n for all  $s \in \mathbf{C}$ 

equivalent to:

(A,B) is uncontrollable if and only if there is a  $w\neq 0$  with

$$w^T A = \lambda w^T, \qquad w^T B = 0$$

i.e., a left eigenvector is orthogonal to columns of B

to show it, first assume that  $w \neq 0$ ,  $w^T A = \lambda w^T$ ,  $w^T B = 0$ then for k = 1, ..., n - 1,  $w^T A^k B = \lambda^k w^T B = 0$ , so  $w^T [B \ AB \ \cdots \ A^{n-1}B] = w^T \mathcal{C} = 0$ 

which shows (A, B) not controllable

conversely, suppose (A, B) not controllable

change coordinates as on p.6–15, let z be any left eigenvector of  $A_{22}$ , and define  $\tilde{w} = (0, z)$ 

then  $\tilde{w}^T\tilde{A}=\lambda\tilde{w}^T$  ,  $\tilde{w}^T\tilde{B}=0$ 

it follows that  $w^T A = \lambda w^T$ ,  $w^T B = 0$ , where  $w = T^{-T} \tilde{w}$ 

Invariant subspaces

## **PBH observability test**

PBH observability criterion: (C, A) is observable if and only if

$$\mathbf{Rank} \left[ \begin{array}{c} sI - A \\ C \end{array} \right] = n \text{ for all } s \in \mathbf{C}$$

equivalent to:

(C, A) is unobservable if and only if there is a  $v \neq 0$  with

$$Av = \lambda v, \qquad Cv = 0$$

*i.e.*, a (right) eigenvector is in the nullspace of C

## **Observability and controllability of modes**

the PBH tests allow us to identify unobservable and uncontrollable modes the mode associated with right and left eigenvectors v, w is

- uncontrollable if  $w^T B = 0$
- unobservable if Cv = 0

(classification can be done with repeated eigenvalues, Jordan blocks, but gets tricky)

#### **Controllability and linear state feedback**

we consider system  $\dot{x} = Ax + Bu$  (or  $x_{t+1} = Ax_t + Bu_t$ )

we refer to u = Kx + w as a *linear state feedback* (with auxiliary input w), with associated *closed-loop system*  $\dot{x} = (A + BK)x + Bw$ 



suppose  $w^T A = \lambda w^T$ ,  $w \neq 0$ ,  $w^T B = 0$ , *i.e.*, w corresponds to uncontrollable mode of open loop system

then  $w^T(A + BK) = w^TA + w^TBK = \lambda w^T$ , *i.e.*, w is also a left eigenvector of closed-loop system, associated with eigenvalue  $\lambda$ 

*i.e.*, eigenvalues (and indeed, left eigenvectors) associated with uncontrollable modes cannot be changed by linear state feedback

conversely, if w is left eigenvector associated with uncontrollable closed-loop mode, then w is left eigenvector associated with uncontrollable open-loop mode

in other words: state feedback preserves uncontrollable eigenvalues and the associated left eigenvectors

#### Invariant subspaces and quadratic matrix equations

suppose  $\mathcal{V} = \mathcal{R}(M)$  is A-invariant, where  $M \in \mathbf{R}^{n \times k}$  is rank k, so AM = MX for some  $X \in \mathbf{R}^{k \times k}$ 

conformally partition as

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} X$$
$$A_{11}M_1 + A_{12}M_2 = M_1X, \qquad A_{21}M_1 + A_{22}M_2 = M_2X$$

eliminate X from first equation (assuming  $M_1$  is nonsingular):

$$X = M_1^{-1} A_{11} M_1 + M_1^{-1} A_{12} M_2$$

substituting this into second equation yields

$$A_{21}M_1 + A_{22}M_2 = M_2M_1^{-1}A_{11}M_1 + M_2M_1^{-1}A_{12}M_2$$

Invariant subspaces

multiply on right by  $M_1^{-1}$ :

$$A_{21} + A_{22}M_2M_1^{-1} = M_2M_1^{-1}A_{11} + M_2M_1^{-1}A_{12}M_2M_1^{-1}$$

with  $P = M_2 M_1^{-1}$ , we have

$$-A_{22}P + PA_{11} - A_{21} + PA_{12}P = 0,$$

a general quadratic matrix equation

if we take A to be Hamitonian associated with a cts-time LQR problem, we recover the method of solving ARE via stable eigenvectors of Hamiltonian