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Lecture 6

Invariant subspaces

• invariant subspaces

• a matrix criterion

• Sylvester equation

• the PBH controllability and observability conditions

• invariant subspaces, quadratic matrix equations, and the ARE
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Invariant subspaces

suppose A ∈ Rn×n and V ⊆ Rn is a subspace

we say that V is A-invariant if AV ⊆ V, i.e., v ∈ V =⇒ Av ∈ V

examples:

• {0} and Rn are always A-invariant

• span{v1, . . . , vm} is A-invariant, where vi are (right) eigenvectors of A

• if A is block upper triangular,

A =

[

A11 A12

0 A22

]

,

with A11 ∈ Rr×r, then V =

{[

z

0

] ∣

∣

∣

∣

z ∈ Rr

}

is A-invariant
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Examples from linear systems

• if B ∈ Rn×m, then the controllable subspace

R(C) = R
(

[B AB · · · An−1B]
)

is A-invariant

• if C ∈ Rp×n, then the unobservable subspace

N (O) = N









C
...

CAn−1









is A-invariant
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Dynamical interpretation

consider system ẋ = Ax

V is A-invariant if and only if

x(0) ∈ V =⇒ x(t) ∈ V for all t ≥ 0

(same statement holds for discrete-time system)
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A matrix criterion for A-invariance

suppose V is A-invariant

let columns of M ∈ Rn×k span V, i.e.,

V = R(M) = R([t1 · · · tk])

since At1 ∈ V, we can express it as

At1 = x11t1 + · · · + xk1tk

we can do the same for At2, . . . , Atk, which gives

A[t1 · · · tk] = [t1 · · · tk]





x11 · · · x1k
... ...

xk1 · · · xkk





or, simply, AM = MX
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in other words: if R(M) is A-invariant, then there is a matrix X such that
AM = MX

converse is also true: if there is an X such that AM = MX, then R(M)
is A-invariant

now assume M is rank k, i.e., {t1, . . . , tk} is a basis for V

then every eigenvalue of X is an eigenvalue of A, and the associated
eigenvector is in V = R(M)

if Xu = λu, u 6= 0, then Mu 6= 0 and A(Mu) = MXu = λMu

so the eigenvalues of X are a subset of the eigenvalues of A

more generally: if AM = MX (no assumption on rank of M), then A and
X share at least Rank(M) eigenvalues
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Sylvester equation

the Sylvester equation is AX + XB = C, where A, B, C, X ∈ Rn×n

when does this have a solution X for every C?

express as S(X) = C, where S is the linear function S(X) = AX + XB

(S maps Rn×n into Rn×n and is called the Sylvester operator)

so the question is: when is S nonsingular?

S is singular if and only if there exists a nonzero X with S(X) = 0

this means AX + XB = 0, so AX = X(−B), which means A and −B

share at least one eigenvalue (since X 6= 0)

so we have: if S is singular, then A and −B have a common eigenvalue
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let’s show the converse: if A and −B share an eigenvalue, S is singular

suppose
Av = λv, wTB = −λwT , v, w 6= 0

then with X = vwT we have X 6= 0 and

S(X) = AX + XB = AvwT + vwTB = (λv)wT + v(−λwT ) = 0

which shows S is singular

so, Sylvestor operator is singular if and only if A and −B have a common
eigenvalue

or: Sylvestor operator is nonsingular if and only if A and −B have no
common eigenvalues
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Uniqueness of stabilizing ARE solution

suppose P is any solution of ARE

ATP + PA + Q − PBR−1BTP = 0

and define K = −R−1BTP

we say P is a stabilizing solution of ARE if

A + BK = A − BR−1BTP

is stable, i.e., its eigenvalues have negative real part

fact: there is at most one stabilizing solution of the ARE
(which therefore is the one that gives the value function)
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to show this, suppose P1 and P2 are both stabilizing solutions

subtract AREs to get

AT (P1 − P2) + (P1 − P2)A − P1BR−1BTP1 + P2BR−1BTP2 = 0

rewrite as Sylvester equation

(A + BK2)
T (P1 − P2) + (P1 − P2)(A + BK1) = 0

since A + BK2 and A + BK1 are both stable, A + BK2 and −(A + BK1)
cannot share any eigenvalues, so we conclude P1 − P2 = 0
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Change of coordinates

suppose V = R(M) is A-invariant, where M ∈ Rn×k is rank k

find M̃ ∈ Rn×(n−k) so that [M M̃ ] is nonsingular

A[M M̃ ] = [AM AM̃ ] = [M M̃ ]

[

X Y

0 Z

]

where
[

Y

Z

]

= [M M̃ ]−1AM̃

with T = [M M̃ ], we have

T−1AT =

[

X Y

0 Z

]
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in other words: if V is A-invariant we can change coordinates so that

• A becomes block upper triangular in the new coordinates

• V corresponds to

{[

z

0

] ∣

∣

∣

∣

z ∈ Rk

}

in the new coordinates
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Revealing the controllable subspace

consider ẋ = Ax + Bu (or xt+1 = Axt + But) and assume it is not

controllable, so V = R(C) 6= Rn

let columns of M ∈ Rk be basis for controllable subspace
(e.g., choose k independent columns from C)

let M̃ ∈ Rn×(n−k) be such that T = [M M̃ ] is nonsingular

then

T−1AT =

[

Ã11 Ã12

0 Ã22

]

, T−1B =

[

B̃1

0

]

C̃ = T−1C =

[

B̃1 · · · Ãn−1
11 B̃1

0 · · · 0

]

in the new coordinates the controllable subspace is {(z, 0) | z ∈ Rk};
(Ã11, B̃1) is controllable
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we have changed coordinates to reveal the controllable subspace:

u

x̃1

x̃2

1/s

1/s

Ã11

Ã12

Ã22

B̃1

roughly speaking, x̃1 is the controllable part of the state
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Revealing the unobservable subspace

similarly, if (C, A) is not observable, we can change coordinates to obtain

T−1AT =

[

Ã11 0

Ã21 Ã22

]

, CT =
[

C̃1 0
]

and (C̃1, Ã11) is observable
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Popov-Belevitch-Hautus controllability test

PBH controllability criterion: (A, B) is controllable if and only if

Rank [sI − A B] = n for all s ∈ C

equivalent to:

(A, B) is uncontrollable if and only if there is a w 6= 0 with

wTA = λwT , wTB = 0

i.e., a left eigenvector is orthogonal to columns of B
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to show it, first assume that w 6= 0, wTA = λwT , wTB = 0

then for k = 1, . . . , n − 1, wTAkB = λkwTB = 0, so

wT [B AB · · · An−1B] = wTC = 0

which shows (A, B) not controllable

conversely, suppose (A, B) not controllable

change coordinates as on p.6–15, let z be any left eigenvector of Ã22, and
define w̃ = (0, z)

then w̃T Ã = λw̃T , w̃T B̃ = 0

it follows that wTA = λwT , wTB = 0, where w = T−T w̃
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PBH observability test

PBH observability criterion: (C, A) is observable if and only if

Rank

[

sI − A

C

]

= n for all s ∈ C

equivalent to:

(C, A) is unobservable if and only if there is a v 6= 0 with

Av = λv, Cv = 0

i.e., a (right) eigenvector is in the nullspace of C
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Observability and controllability of modes

the PBH tests allow us to identify unobservable and uncontrollable modes

the mode associated with right and left eigenvectors v, w is

• uncontrollable if wTB = 0

• unobservable if Cv = 0

(classification can be done with repeated eigenvalues, Jordan blocks, but
gets tricky)
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Controllability and linear state feedback

we consider system ẋ = Ax + Bu (or xt+1 = Axt + But)

we refer to u = Kx + w as a linear state feedback (with auxiliary input
w), with associated closed-loop system ẋ = (A + BK)x + Bw

u

x

w

A

K

B 1/s
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suppose wTA = λwT , w 6= 0, wTB = 0, i.e., w corresponds to
uncontrollable mode of open loop system

then wT (A + BK) = wTA + wTBK = λwT , i.e., w is also a left
eigenvector of closed-loop system, associated with eigenvalue λ

i.e., eigenvalues (and indeed, left eigenvectors) associated with
uncontrollable modes cannot be changed by linear state feedback

conversely, if w is left eigenvector associated with uncontrollable
closed-loop mode, then w is left eigenvector associated with uncontrollable
open-loop mode

in other words: state feedback preserves uncontrollable eigenvalues and the
associated left eigenvectors
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Invariant subspaces and quadratic matrix equations

suppose V = R(M) is A-invariant, where M ∈ Rn×k is rank k, so
AM = MX for some X ∈ Rk×k

conformally partition as

[

A11 A12

A21 A22

] [

M1

M2

]

=

[

M1

M2

]

X

A11M1 + A12M2 = M1X, A21M1 + A22M2 = M2X

eliminate X from first equation (assuming M1 is nonsingular):

X = M−1
1 A11M1 + M−1

1 A12M2

substituting this into second equation yields

A21M1 + A22M2 = M2M
−1
1 A11M1 + M2M

−1
1 A12M2
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multiply on right by M−1
1 :

A21 + A22M2M
−1
1 = M2M

−1
1 A11 + M2M

−1
1 A12M2M

−1
1

with P = M2M
−1
1 , we have

−A22P + PA11 − A21 + PA12P = 0,

a general quadratic matrix equation

if we take A to be Hamitonian associated with a cts-time LQR problem, we
recover the method of solving ARE via stable eigenvectors of Hamiltonian
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