## Lecture 6 Invariant subspaces

- invariant subspaces
- a matrix criterion
- Sylvester equation
- the PBH controllability and observability conditions
- invariant subspaces, quadratic matrix equations, and the ARE


## Invariant subspaces

suppose $A \in \mathbf{R}^{n \times n}$ and $\mathcal{V} \subseteq \mathbf{R}^{n}$ is a subspace
we say that $\mathcal{V}$ is $A$-invariant if $A \mathcal{V} \subseteq \mathcal{V}$, i.e., $v \in \mathcal{V} \Longrightarrow A v \in \mathcal{V}$
examples:

- $\{0\}$ and $\mathbf{R}^{n}$ are always $A$-invariant
- $\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ is $A$-invariant, where $v_{i}$ are (right) eigenvectors of $A$
- if $A$ is block upper triangular,
with $A_{11} \in \mathbf{R}^{r \times r}$, then $\mathcal{V}=\left\{\left.\left[\begin{array}{l}z \\ 0\end{array}\right] \right\rvert\, z \in \mathbf{R}^{r}\right\}$ is $A$-invariant


## Examples from linear systems

- if $B \in \mathbf{R}^{n \times m}$, then the controllable subspace

$$
\mathcal{R}(\mathcal{C})=\mathcal{R}\left(\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]\right)
$$

is $A$-invariant

- if $C \in \mathbf{R}^{p \times n}$, then the unobservable subspace

$$
\mathcal{N}(\mathcal{O})=\mathcal{N}\left(\left[\begin{array}{c}
C \\
\vdots \\
C A^{n-1}
\end{array}\right]\right)
$$

is $A$-invariant

## Dynamical interpretation

consider system $\dot{x}=A x$
$\mathcal{V}$ is $A$-invariant if and only if

$$
x(0) \in \mathcal{V} \Longrightarrow x(t) \in \mathcal{V} \text { for all } t \geq 0
$$

(same statement holds for discrete-time system)

## A matrix criterion for $A$-invariance

suppose $\mathcal{V}$ is $A$-invariant
let columns of $M \in \mathbf{R}^{n \times k} \operatorname{span} \mathcal{V}$, i.e.,

$$
\mathcal{V}=\mathcal{R}(M)=\mathcal{R}\left(\left[t_{1} \cdots t_{k}\right]\right)
$$

since $A t_{1} \in \mathcal{V}$, we can express it as

$$
A t_{1}=x_{11} t_{1}+\cdots+x_{k 1} t_{k}
$$

we can do the same for $A t_{2}, \ldots, A t_{k}$, which gives

$$
A\left[t_{1} \cdots t_{k}\right]=\left[t_{1} \cdots t_{k}\right]\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 k} \\
\vdots & & \vdots \\
x_{k 1} & \cdots & x_{k k}
\end{array}\right]
$$

or, simply, $A M=M X$
in other words: if $\mathcal{R}(M)$ is $A$-invariant, then there is a matrix $X$ such that $A M=M X$
converse is also true: if there is an $X$ such that $A M=M X$, then $\mathcal{R}(M)$ is $A$-invariant
now assume $M$ is rank $k$, i.e., $\left\{t_{1}, \ldots, t_{k}\right\}$ is a basis for $\mathcal{V}$
then every eigenvalue of $X$ is an eigenvalue of $A$, and the associated eigenvector is in $\mathcal{V}=\mathcal{R}(M)$
if $X u=\lambda u, u \neq 0$, then $M u \neq 0$ and $A(M u)=M X u=\lambda M u$
so the eigenvalues of $X$ are a subset of the eigenvalues of $A$
more generally: if $A M=M X$ (no assumption on rank of $M$ ), then $A$ and $X$ share at least $\operatorname{Rank}(M)$ eigenvalues

## Sylvester equation

the Sylvester equation is $A X+X B=C$, where $A, B, C, X \in \mathbf{R}^{n \times n}$
when does this have a solution $X$ for every $C$ ?
express as $S(X)=C$, where $S$ is the linear function $S(X)=A X+X B$ ( $S$ maps $\mathbf{R}^{n \times n}$ into $\mathbf{R}^{n \times n}$ and is called the Sylvester operator)
so the question is: when is $S$ nonsingular?
$S$ is singular if and only if there exists a nonzero $X$ with $S(X)=0$
this means $A X+X B=0$, so $A X=X(-B)$, which means $A$ and $-B$ share at least one eigenvalue (since $X \neq 0$ )
so we have: if $S$ is singular, then $A$ and $-B$ have a common eigenvalue
let's show the converse: if $A$ and $-B$ share an eigenvalue, $S$ is singular suppose

$$
A v=\lambda v, \quad w^{T} B=-\lambda w^{T}, \quad v, w \neq 0
$$

then with $X=v w^{T}$ we have $X \neq 0$ and

$$
S(X)=A X+X B=A v w^{T}+v w^{T} B=(\lambda v) w^{T}+v\left(-\lambda w^{T}\right)=0
$$

which shows $S$ is singular
so, Sylvestor operator is singular if and only if $A$ and $-B$ have a common eigenvalue
or: Sylvestor operator is nonsingular if and only if $A$ and $-B$ have no common eigenvalues

## Uniqueness of stabilizing ARE solution

suppose $P$ is any solution of ARE

$$
A^{T} P+P A+Q-P B R^{-1} B^{T} P=0
$$

and define $K=-R^{-1} B^{T} P$
we say $P$ is a stabilizing solution of ARE if

$$
A+B K=A-B R^{-1} B^{T} P
$$

is stable, i.e., its eigenvalues have negative real part
fact: there is at most one stabilizing solution of the ARE (which therefore is the one that gives the value function)
to show this, suppose $P_{1}$ and $P_{2}$ are both stabilizing solutions subtract AREs to get

$$
A^{T}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right) A-P_{1} B R^{-1} B^{T} P_{1}+P_{2} B R^{-1} B^{T} P_{2}=0
$$

rewrite as Sylvester equation

$$
\left(A+B K_{2}\right)^{T}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right)\left(A+B K_{1}\right)=0
$$

since $A+B K_{2}$ and $A+B K_{1}$ are both stable, $A+B K_{2}$ and $-\left(A+B K_{1}\right)$ cannot share any eigenvalues, so we conclude $P_{1}-P_{2}=0$

## Change of coordinates

suppose $\mathcal{V}=\mathcal{R}(M)$ is $A$-invariant, where $M \in \mathbf{R}^{n \times k}$ is rank $k$
find $\tilde{M} \in \mathbf{R}^{n \times(n-k)}$ so that $[M \tilde{M}]$ is nonsingular

$$
A\left[\begin{array}{ll}
M & \tilde{M}
\end{array}\right]=\left[\begin{array}{ll}
A M & A \tilde{M}
\end{array}\right]=\left[\begin{array}{ll}
M & \tilde{M}
\end{array}\right]\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
Y \\
Z
\end{array}\right]=\left[\begin{array}{ll}
M & \tilde{M}
\end{array}\right]^{-1} A \tilde{M}
$$

with $T=\left[\begin{array}{ll}M & \tilde{M}\end{array}\right]$, we have

$$
T^{-1} A T=\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]
$$

in other words: if $\mathcal{V}$ is $A$-invariant we can change coordinates so that

- $A$ becomes block upper triangular in the new coordinates
- $\mathcal{V}$ corresponds to $\left\{\left.\left[\begin{array}{l}z \\ 0\end{array}\right] \right\rvert\, z \in \mathbf{R}^{k}\right\}$ in the new coordinates


## Revealing the controllable subspace

consider $\dot{x}=A x+B u\left(\right.$ or $\left.x_{t+1}=A x_{t}+B u_{t}\right)$ and assume it is not controllable, so $\mathcal{V}=\mathcal{R}(\mathcal{C}) \neq \mathbf{R}^{n}$
let columns of $M \in \mathbf{R}^{k}$ be basis for controllable subspace (e.g., choose $k$ independent columns from $\mathcal{C}$ )
let $\tilde{M} \in \mathbf{R}^{n \times(n-k)}$ be such that $T=\left[\begin{array}{ll}M & \tilde{M}\end{array}\right]$ is nonsingular then

$$
\begin{aligned}
T^{-1} A T & =\left[\begin{array}{cc}
\tilde{A}_{11} & \tilde{A}_{12} \\
0 & \tilde{A}_{22}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\tilde{B}_{1} \\
0
\end{array}\right] \\
\tilde{\mathcal{C}} & =T^{-1} \mathcal{C}=\left[\begin{array}{ccc}
\tilde{B}_{1} & \cdots & \tilde{A}_{11}^{n-1} \tilde{B}_{1} \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

in the new coordinates the controllable subspace is $\left\{(z, 0) \mid z \in \mathbf{R}^{k}\right\}$; ( $\tilde{A}_{11}, \tilde{B}_{1}$ ) is controllable
we have changed coordinates to reveal the controllable subspace:

roughly speaking, $\tilde{x}_{1}$ is the controllable part of the state

## Revealing the unobservable subspace

similarly, if $(C, A)$ is not observable, we can change coordinates to obtain

$$
T^{-1} A T=\left[\begin{array}{cc}
\tilde{A}_{11} & 0 \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right], \quad C T=\left[\begin{array}{cc}
\tilde{C}_{1} & 0
\end{array}\right]
$$

and $\left(\tilde{C}_{1}, \tilde{A}_{11}\right)$ is observable

## Popov-Belevitch-Hautus controllability test

PBH controllability criterion: $(A, B)$ is controllable if and only if

$$
\boldsymbol{\operatorname { R a n k }}[s I-A B]=n \text { for all } s \in \mathbf{C}
$$

equivalent to:
$(A, B)$ is uncontrollable if and only if there is a $w \neq 0$ with

$$
w^{T} A=\lambda w^{T}, \quad w^{T} B=0
$$

i.e., a left eigenvector is orthogonal to columns of $B$
to show it, first assume that $w \neq 0, w^{T} A=\lambda w^{T}, w^{T} B=0$
then for $k=1, \ldots, n-1, w^{T} A^{k} B=\lambda^{k} w^{T} B=0$, so

$$
w^{T}\left[\begin{array}{llll}
B & A B & \cdots & \left.A^{n-1} B\right]=w^{T} \mathcal{C}=0
\end{array}\right.
$$

which shows $(A, B)$ not controllable
conversely, suppose $(A, B)$ not controllable
change coordinates as on p. $6-15$, let $z$ be any left eigenvector of $\tilde{A}_{22}$, and define $\tilde{w}=(0, z)$
then $\tilde{w}^{T} \tilde{A}=\lambda \tilde{w}^{T}, \tilde{w}^{T} \tilde{B}=0$
it follows that $w^{T} A=\lambda w^{T}, w^{T} B=0$, where $w=T^{-T} \tilde{w}$

## PBH observability test

PBH observability criterion: $(C, A)$ is observable if and only if

$$
\operatorname{Rank}\left[\begin{array}{c}
s I-A \\
C
\end{array}\right]=n \text { for all } s \in \mathbf{C}
$$

equivalent to:
$(C, A)$ is unobservable if and only if there is a $v \neq 0$ with

$$
A v=\lambda v, \quad C v=0
$$

i.e., a (right) eigenvector is in the nullspace of $C$

## Observability and controllability of modes

the PBH tests allow us to identify unobservable and uncontrollable modes the mode associated with right and left eigenvectors $v, w$ is

- uncontrollable if $w^{T} B=0$
- unobservable if $C v=0$
(classification can be done with repeated eigenvalues, Jordan blocks, but gets tricky)


## Controllability and linear state feedback

we consider system $\dot{x}=A x+B u\left(\right.$ or $\left.x_{t+1}=A x_{t}+B u_{t}\right)$
we refer to $u=K x+w$ as a linear state feedback (with auxiliary input $w$ ), with associated closed-loop system $\dot{x}=(A+B K) x+B w$

suppose $w^{T} A=\lambda w^{T}, w \neq 0, w^{T} B=0$, i.e., $w$ corresponds to uncontrollable mode of open loop system
then $w^{T}(A+B K)=w^{T} A+w^{T} B K=\lambda w^{T}$, i.e., $w$ is also a left eigenvector of closed-loop system, associated with eigenvalue $\lambda$
i.e., eigenvalues (and indeed, left eigenvectors) associated with uncontrollable modes cannot be changed by linear state feedback
conversely, if $w$ is left eigenvector associated with uncontrollable closed-loop mode, then $w$ is left eigenvector associated with uncontrollable open-loop mode
in other words: state feedback preserves uncontrollable eigenvalues and the associated left eigenvectors

## Invariant subspaces and quadratic matrix equations

suppose $\mathcal{V}=\mathcal{R}(M)$ is $A$-invariant, where $M \in \mathbf{R}^{n \times k}$ is rank $k$, so $A M=M X$ for some $X \in \mathbf{R}^{k \times k}$
conformally partition as

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right]=\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right] X} \\
A_{11} M_{1}+A_{12} M_{2}=M_{1} X, \quad A_{21} M_{1}+A_{22} M_{2}=M_{2} X
\end{gathered}
$$

eliminate $X$ from first equation (assuming $M_{1}$ is nonsingular):

$$
X=M_{1}^{-1} A_{11} M_{1}+M_{1}^{-1} A_{12} M_{2}
$$

substituting this into second equation yields

$$
A_{21} M_{1}+A_{22} M_{2}=M_{2} M_{1}^{-1} A_{11} M_{1}+M_{2} M_{1}^{-1} A_{12} M_{2}
$$

multiply on right by $M_{1}^{-1}$ :

$$
A_{21}+A_{22} M_{2} M_{1}^{-1}=M_{2} M_{1}^{-1} A_{11}+M_{2} M_{1}^{-1} A_{12} M_{2} M_{1}^{-1}
$$

with $P=M_{2} M_{1}^{-1}$, we have

$$
-A_{22} P+P A_{11}-A_{21}+P A_{12} P=0
$$

a general quadratic matrix equation
if we take $A$ to be Hamitonian associated with a cts-time LQR problem, we recover the method of solving ARE via stable eigenvectors of Hamiltonian

