Lecture ¹⁴Lyapunov theory with inputs and outputs

- systems with inputs and outputs
- reachability bounding
- bounds on RMS gain
- bounded-real lemma
- feedback synthesis via control-Lyapunov functions

Systems with inputs

we now consider systems with inputs, $i.e.,$ $\dot{x}=f(x,u),$ where $x(t)\in\textbf{R}^n,$ $u(t) \in \mathbf{R}^m$

if $x, \; u$ is state-input trajectory and $V: \mathbf{R}^n \to \mathbf{R}$, then

$$
\frac{d}{dt}V(x(t)) = \nabla V(x(t))^T \dot{x}(t) = \nabla V(x(t))^T f(x(t), u(t))
$$

so we define \dot{V} $V: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ as

$$
\dot{V}(z,w) = \nabla V(z)^T f(z,w)
$$

 $(i.e.,~\dot{V}$ V depends on the state and input)

Reachable set with admissible inputs

consider $\dot{x} = f(x, u)$, $x(0) = 0$, and $u(t) \in \mathcal{U}$ for all t

 $\mathcal{U} \subseteq \mathbf{R}^m$ is called the set of *admissable inputs*

we define the *reachable set* as

$$
\mathcal{R} = \{x(T) \mid \dot{x} = f(x, u), \ x(0) = 0, \ u(t) \in \mathcal{U}, \ T > 0\}
$$

 $i.e.,$ the set of points that can be hit by a trajectory with some admissiable input

applications:

- if u is a control input that we can manipulate, R shows the places we
see hit (so his R is sood) can hit (so big $\cal R$ is good)
- \bullet if u is a disturbance, noise, or antagonistic signal (beyond our control), ${\mathcal R}$ shows the worst-case effect on x (so big ${\mathcal R}$ is bad)

Lyapunov bound on reachable set

Lyapunov arguments can be used to bound reachable sets of nonlinear ortime-varying systems

suppose there is a $V: \mathbf{R}^n$ $\overline{P}^n\to{\bf R}$ and $a>0$ such that

$$
\dot{V}(z,w) \le -a \text{ whenever } V(z) = b \text{ and } w \in \mathcal{U}
$$

and define $C=\{z\mid V(z)\leq b\}$

then, if $\dot{x}=f(x,u)$, $x(0)\in C$, and $u(t)\in\mathcal{U}$ for $0\leq t\leq T$, we have $x(T) \in C$

 $i.e.,$ every trajectory that starts in $C=\{z\mid V(z)\leq b\}$ stays there, for any admissable u

in particular, if $0\in C$, we conclude $\mathcal{R}\subseteq C$

idea: on the boundary of C , every trajectory cuts *into* C , for all admissable values of u

proof: suppose $\dot{x} = f(x,u)$, $x(0) \in C$, and $u(t) \in \mathcal{U}$ for $0 \leq t \leq T$, and V satisfies hypotheses

suppose that $x(T) \not\in C$

consider scalar function $g(t)=V(x(t))$

 $g(0) \leq b$ and $g(T) > b$, so there is a $t_0 \in [0,T]$ with $g(t_0) = b$, $g'(t_0) \geq 0$ but

$$
g'(t_0) = \frac{d}{dt}V(x(t)) = \dot{V}(x(t), u(t)) \le -a < 0
$$

by the hypothesis, so we have ^a contradiction

Reachable set with integral quadratic bounds

we consider $\dot{x}=f(x, u)$, $x(0) = 0$, with an integral constraint on the input:

$$
\int_0^\infty u(t)^T u(t) \, dt \le a
$$

the reachable set with this integral quadratic bound is

$$
\mathcal{R}_a = \left\{ x(T) \middle| \dot{x} = f(x, u), \ x(0) = x_0, \ \int_0^T u(t)^T u(t) \ dt \le a \right\}
$$

 $\it i.e.,$ the set of points that can be hit using at most $\it a$ energy

Example

consider stable linear system $\dot{x} = Ax + Bu$

minimum energy ($i.e.,$ integral of u^Tu) to hit point z is $z^TW_c^{-1}z,$ where W_c is controllability Grammian

reachable set with integral quadratic bound is (open) ellipsoid

$$
\mathcal{R}_a = \{ z \mid z^T W_c^{-1} z < a \}
$$

Lyapunov bound on reachable set with integral constraint

suppose there is a $V: \mathbf{R}^n$ $\sqrt[n]{}\rightarrow{\bf R}$ such that

- $V(z) \geq 0$ for all $z, V(0) = 0$
- $\bullet\,\,\dot V(z,w) \leq w^T$ ${}^{T}w$ for all z, w

then \mathcal{R}_a $a \subseteq \{z \mid V(z) \leq a\}$

proof:

$$
V(x(T)) - V(x(0)) = \int_0^T \dot{V}(x(t), u(t)) dt \le \int_0^T u(t)^T u(t) dt \le a
$$

so, using $V(x(0)) = V(0) = 0$, $V(x(T)) \leq a$

interpretation:

- $\bullet\,$ V is (generalized) internally stored energy in system
- • $\bullet \ \ u(t)^T u(t)$ is power supplied to system by input
- \bullet \dot{V} $\tilde{V} \leq u^T u$ means stored energy increases by no more than power input
- $\bullet \; V(0) = 0$ means system starts in zero energy state
- \bullet conclusion is: if energy $\le a$ applied, can only get to states with stored energy $\leq a$

Stable linear system

consider stable linear system $\dot{x} = Ax + Bu$

we'll show Lyapunov bound is tight in this case, with $V(z) = z^T W_c^{-1} z$ multiply $A W_c + W_c A^T + B B^T = 0$ on left $\&$ right by W_c^{-1} to get

$$
W_c^{-1}A + A^T W_c^{-1} + W_c^{-1} B B^T W_c^{-1} = 0
$$

now we can find and bound \dot{V} :

$$
\dot{V}(z, w) = 2z^{T} W_{c}^{-1} (Az + Bw)
$$
\n
$$
= z^{T} (W_{c}^{-1} A + A^{T} W_{c}^{-1}) z + 2z^{T} W_{c}^{-1} Bw
$$
\n
$$
= -z^{T} W_{c}^{-1} B B^{T} W_{c}^{-1} z + 2z^{T} W_{c}^{-1} Bw
$$
\n
$$
= -\|B^{T} W_{c}^{-1} z - w\|^{2} + w^{T} w
$$
\n
$$
\leq w^{T} w
$$

for $V(z) = z^T W_c^{-1} z$, Lyapunov bound is

$$
\mathcal{R}_a \subseteq \{ z \mid z^T W_c^{-1} z \le a \}
$$

righthand set is closure of lefthand set, so bound is tight

roughly speaking, for ^a stable linear system, ^a point is reachable with anintegral quadratic bound if and only if there is ^a quadratic Lyapunovfunction that proves it(except for points right on the boundary)

RMS gain

recall that the RMS value of ^a signal is ^given by

$$
\mathbf{rms}(z) = \left(\lim_{T \to \infty} \frac{1}{T} \int_0^T \|z(t)\|^2 \, dt\right)^{1/2}
$$

assuming the limit exists

now consider a system with input signal u and output signal y

we define its RMS $gain$ as the maximum of $\mathsf{rms}(y)/\mathsf{rms}(u)$, over all u with nonzero RMS value

Lyapunov method for bounding RMS gain

now consider the nonlinear system

$$
\dot{x} = f(x, u), \qquad x(0) = 0, \qquad y = g(x, u)
$$

with $x(t)\in\mathbf{R}^n$ n , $u(t)\in\mathbf{R}^m$, $y(t)\in\mathbf{R}^{p}$

we can use Lyapunov methods to bound its RMS gain

suppose $\gamma\geq0$, and there is a V : R^n $\sqrt[n]{}\rightarrow{\bf R}$ such that

- $V(z) \geq 0$ for all $z, V(0) = 0$
- $\bullet\,\,\dot V(z,w) \leq \gamma^2$ \mathbf{T} $(\emph{i.e., } \dot{V}(z,w) \leq \gamma^2 w^T w - g(z,w)^T)$ $^{2}w^{T}$ $- w - y$ $\, T \,$ Ty for all $z,\ w$ $^{2}w^{T}w-g(z,w)^{T}$ $g(z,w)$ for all $z,\ w)$

then, the RMS gain of the system is no more than γ

proof:

$$
V(x(T)) - V(x(0)) = \int_0^T \dot{V}(x(t), u(t)) dt
$$

$$
\leq \int_0^T (\gamma^2 u(t)^T u(t) - y(t)^T y(t)) dt
$$

using $V(x(0)) = V(0) = 0$, $V(x(T)) \geq 0$, we have

$$
\int_0^T y(t)^T y(t) dt \le \gamma^2 \int_0^T u(t)^T u(t) dt
$$

dividing by T and taking the limit $T\rightarrow \infty$ yields $\mathsf{rms}(y)^2 \leq \gamma^2 \mathsf{rms}(u)^2$

Bounded-real lemma

let's use a quadratic Lyapunov function $V(z) = z^T P z$ to bound the RMS gain of the stable linear system $\dot{x} = Ax + Bu$, $x(0) = 0$, $y = Cx$

the conditions on V give $P\geq 0$

the condition \dot{V} $\tilde{V}(z,w) \leq \gamma^2 w^T w - g(z,w)^T g(z,w)$ becomes

$$
\dot{V}(z,w) = 2z^{T}P(Az + Bw) \leq \gamma^{2}w^{T}w - (Cz)^{T}Cz
$$

for all z, w

let's write that as a quadratic form in (z,w) :

$$
\begin{bmatrix} z \\ w \end{bmatrix}^T \begin{bmatrix} A^T P + P A + C^T C & P B \\ B^T P & -\gamma^2 I \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} \le 0
$$

so we conclude: if there is a $P\geq 0$ such that

$$
\left[\begin{array}{cc} A^T P + P A + C^T C & P B \\ B^T P & -\gamma^2 I \end{array}\right] \le 0
$$

then the RMS gain of the linear system is no more than γ

it turns out that for linear systems this condition is not only sufficient, butalso necessary

(this result is called the *bounded-real lemma*)

by taking Schur complement, we can express the block 2×2 matrix inequality as

 $A^T P + P A + C^T C + \gamma^{-2} P B B^T P \leq 0$

(which is a Riccati-like quadratic matrix *inequality* $\qquad \qquad$)

Nonlinear optimal control

we consider
$$
\dot{x} = f(x, u)
$$
, $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

here we consider u to be an input we can manipulate to achieve some desired response, such as minimizing, or at least making small,

$$
J = \int_0^\infty x(t)^T Q x(t) \, dt
$$

where $Q\geq0$

(many other choices for criterion will work)

we can solve via dynamic programming: let V : \textbf{R}^n $\overline{}^n\to{\bf R}$ denote value function, $\it{i.e.},$

$$
V(z) = \min\{J \mid \dot{x} = f(x, u), \ x(0) = z, \ u(t) \in \mathcal{U}\}\
$$

then the optimal u is given by

$$
u^*(t) = \operatorname*{argmin}_{w \in \mathcal{U}} \dot{V}(x(t), w)
$$

and with the optimal u we have

$$
\dot{V}(x(t), u^*) = -x(t)^T Q x(t)
$$

but, it can be very difficult to find V , and therefore u^\ast

Feedback design via control-Lyapunov functions

suppose there is a function $V: \mathbf{R}^n$ $\sqrt[n]{}\rightarrow{\bf R}$ such that

- $\bullet \ \ V(z) \geq 0$ for all z
- \bullet for all z , $\displaystyle\min_{w\in\mathcal{U}}$ $\dot{V}(z,w) \leq -z$ z^TQz

then, the state feedback control law $u(t)=g(x(t))$, with

$$
g(z) = \operatorname*{argmin}_{w \in \mathcal{U}} \dot{V}(z, w)
$$

results in $J\leq V(x(0))$

in this case V is called a *control-Lyapunov* function for the problem

- $\bullet\,$ if V is the value function, this method recovers the optimal control law
- we've used Lyapunov methods to generate ^a suboptimal control law, but one with ^a guaranteed bound on the cost function
- $\bullet\,$ the control law is a greedy one, that simply chooses $u(t)$ to decrease V as quickly as possible (subject to $u(t) \in \mathcal{U}$)
- $\bullet\,$ the inequality $\displaystyle \min_{w \in \mathcal{U}}$ $w{\in}\mathcal{U}$ $\min V(z, w) = \,V\,$ ˙ $\dot{V}(z,w) \leq -z^TQz$ is the inequality form of $w{\in}\mathcal{U}$ value function $\,V\,$ ˙ $\dot{V}(z,w) = -z^TQz$, which holds for the optimal input, and V the

control-Lyapunov methods offer ^a good way to generate suboptimal control laws, with performance guarantees, when the optimal control is toohard to find