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Lecture 14

Lyapunov theory with inputs and outputs

• systems with inputs and outputs

• reachability bounding

• bounds on RMS gain

• bounded-real lemma

• feedback synthesis via control-Lyapunov functions
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Systems with inputs

we now consider systems with inputs, i.e., ẋ = f(x, u), where x(t) ∈ Rn,
u(t) ∈ Rm

if x, u is state-input trajectory and V : Rn → R, then

d

dt
V (x(t)) = ∇V (x(t))T ẋ(t) = ∇V (x(t))Tf(x(t), u(t))

so we define V̇ : Rn × Rm → R as

V̇ (z, w) = ∇V (z)Tf(z, w)

(i.e., V̇ depends on the state and input)
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Reachable set with admissible inputs

consider ẋ = f(x, u), x(0) = 0, and u(t) ∈ U for all t

U ⊆ Rm is called the set of admissable inputs

we define the reachable set as

R = {x(T ) | ẋ = f(x, u), x(0) = 0, u(t) ∈ U , T > 0}

i.e., the set of points that can be hit by a trajectory with some admissiable
input

applications:

• if u is a control input that we can manipulate, R shows the places we
can hit (so big R is good)

• if u is a disturbance, noise, or antagonistic signal (beyond our control),
R shows the worst-case effect on x (so big R is bad)
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Lyapunov bound on reachable set

Lyapunov arguments can be used to bound reachable sets of nonlinear or
time-varying systems

suppose there is a V : Rn → R and a > 0 such that

V̇ (z, w) ≤ −a whenever V (z) = b and w ∈ U

and define C = {z | V (z) ≤ b}

then, if ẋ = f(x, u), x(0) ∈ C, and u(t) ∈ U for 0 ≤ t ≤ T , we have
x(T ) ∈ C

i.e., every trajectory that starts in C = {z | V (z) ≤ b} stays there, for any
admissable u

in particular, if 0 ∈ C, we conclude R ⊆ C
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idea: on the boundary of C, every trajectory cuts into C, for all
admissable values of u

proof: suppose ẋ = f(x, u), x(0) ∈ C, and u(t) ∈ U for 0 ≤ t ≤ T , and V
satisfies hypotheses

suppose that x(T ) 6∈ C

consider scalar function g(t) = V (x(t))

g(0) ≤ b and g(T ) > b, so there is a t0 ∈ [0, T ] with g(t0) = b, g′(t0) ≥ 0

but

g′(t0) =
d

dt
V (x(t)) = V̇ (x(t), u(t)) ≤ −a < 0

by the hypothesis, so we have a contradiction
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Reachable set with integral quadratic bounds

we consider ẋ = f(x, u), x(0) = 0, with an integral constraint on the
input:

∫ ∞

0

u(t)Tu(t) dt ≤ a

the reachable set with this integral quadratic bound is

Ra =

{

x(T )

∣

∣

∣

∣

∣

ẋ = f(x, u), x(0) = x0,

∫ T

0

u(t)Tu(t) dt ≤ a

}

i.e., the set of points that can be hit using at most a energy
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Example

consider stable linear system ẋ = Ax + Bu

minimum energy (i.e., integral of uTu) to hit point z is zTW−1

c z, where
Wc is controllability Grammian

reachable set with integral quadratic bound is (open) ellipsoid

Ra = {z | zTW−1

c z < a}
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Lyapunov bound on reachable set with integral constraint

suppose there is a V : Rn → R such that

• V (z) ≥ 0 for all z, V (0) = 0

• V̇ (z, w) ≤ wTw for all z, w

then Ra ⊆ {z | V (z) ≤ a}

proof:

V (x(T )) − V (x(0)) =

∫ T

0

V̇ (x(t), u(t)) dt ≤

∫ T

0

u(t)Tu(t) dt ≤ a

so, using V (x(0)) = V (0) = 0, V (x(T )) ≤ a
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interpretation:

• V is (generalized) internally stored energy in system

• u(t)Tu(t) is power supplied to system by input

• V̇ ≤ uTu means stored energy increases by no more than power input

• V (0) = 0 means system starts in zero energy state

• conclusion is: if energy ≤ a applied, can only get to states with stored
energy ≤ a
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Stable linear system

consider stable linear system ẋ = Ax + Bu

we’ll show Lyapunov bound is tight in this case, with V (z) = zTW−1

c z

multiply AWc + WcA
T + BBT = 0 on left & right by W−1

c to get

W−1

c A + ATW−1

c + W−1

c BBTW−1

c = 0

now we can find and bound V̇ :

V̇ (z, w) = 2zTW−1

c (Az + Bw)

= zT
(

W−1

c A + ATW−1

c

)

z + 2zTW−1

c Bw

= −zTW−1

c BBTW−1

c z + 2zTW−1

c Bw

= −‖BTW−1

c z − w‖2 + wTw

≤ wTw
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for V (z) = zTW−1

c z, Lyapunov bound is

Ra ⊆ {z | zTW−1

c z ≤ a}

righthand set is closure of lefthand set, so bound is tight

roughly speaking, for a stable linear system, a point is reachable with an
integral quadratic bound if and only if there is a quadratic Lyapunov
function that proves it
(except for points right on the boundary)
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RMS gain

recall that the RMS value of a signal is given by

rms(z) =

(

lim
T→∞

1

T

∫ T

0

‖z(t)‖2 dt

)1/2

assuming the limit exists

now consider a system with input signal u and output signal y

we define its RMS gain as the maximum of rms(y)/rms(u), over all u
with nonzero RMS value
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Lyapunov method for bounding RMS gain

now consider the nonlinear system

ẋ = f(x, u), x(0) = 0, y = g(x, u)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp

we can use Lyapunov methods to bound its RMS gain

suppose γ ≥ 0, and there is a V : Rn → R such that

• V (z) ≥ 0 for all z, V (0) = 0

• V̇ (z, w) ≤ γ2wTw − yTy for all z, w
(i.e., V̇ (z, w) ≤ γ2wTw − g(z, w)Tg(z, w) for all z, w)

then, the RMS gain of the system is no more than γ
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proof:

V (x(T )) − V (x(0)) =

∫ T

0

V̇ (x(t), u(t)) dt

≤

∫ T

0

(

γ2u(t)Tu(t) − y(t)Ty(t)
)

dt

using V (x(0)) = V (0) = 0, V (x(T )) ≥ 0, we have

∫ T

0

y(t)Ty(t) dt ≤ γ2

∫ T

0

u(t)Tu(t) dt

dividing by T and taking the limit T → ∞ yields rms(y)2 ≤ γ2rms(u)2
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Bounded-real lemma

let’s use a quadratic Lyapunov function V (z) = zTPz to bound the RMS
gain of the stable linear system ẋ = Ax + Bu, x(0) = 0, y = Cx

the conditions on V give P ≥ 0

the condition V̇ (z, w) ≤ γ2wTw − g(z, w)Tg(z, w) becomes

V̇ (z, w) = 2zTP (Az + Bw) ≤ γ2wTw − (Cz)TCz

for all z, w

let’s write that as a quadratic form in (z, w):

[

z
w

]T [
ATP + PA + CTC PB

BTP −γ2I

] [

z
w

]

≤ 0
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so we conclude: if there is a P ≥ 0 such that

[

ATP + PA + CTC PB
BTP −γ2I

]

≤ 0

then the RMS gain of the linear system is no more than γ

it turns out that for linear systems this condition is not only sufficient, but
also necessary

(this result is called the bounded-real lemma)

by taking Schur complement, we can express the block 2 × 2 matrix
inequality as

ATP + PA + CTC + γ−2PBBTP ≤ 0

(which is a Riccati-like quadratic matrix inequality . . . )
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Nonlinear optimal control

we consider ẋ = f(x, u), u(t) ∈ U ⊆ Rm

here we consider u to be an input we can manipulate to achieve some
desired response, such as minimizing, or at least making small,

J =

∫ ∞

0

x(t)TQx(t) dt

where Q ≥ 0

(many other choices for criterion will work)
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we can solve via dynamic programming: let V : Rn → R denote value
function, i.e.,

V (z) = min{J | ẋ = f(x, u), x(0) = z, u(t) ∈ U}

then the optimal u is given by

u∗(t) = argmin
w∈U

V̇ (x(t), w)

and with the optimal u we have

V̇ (x(t), u∗) = −x(t)TQx(t)

but, it can be very difficult to find V , and therefore u∗
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Feedback design via control-Lyapunov functions

suppose there is a function V : Rn → R such that

• V (z) ≥ 0 for all z

• for all z, min
w∈U

V̇ (z, w) ≤ −zTQz

then, the state feedback control law u(t) = g(x(t)), with

g(z) = argmin
w∈U

V̇ (z, w)

results in J ≤ V (x(0))

in this case V is called a control-Lyapunov function for the problem
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• if V is the value function, this method recovers the optimal control law

• we’ve used Lyapunov methods to generate a suboptimal control law,
but one with a guaranteed bound on the cost function

• the control law is a greedy one, that simply chooses u(t) to decrease V
as quickly as possible (subject to u(t) ∈ U)

• the inequality min
w∈U

V̇ (z, w) ≤ −zTQz is the inequality form of

min
w∈U

V̇ (z, w) = −zTQz, which holds for the optimal input, and V the

value function

control-Lyapunov methods offer a good way to generate suboptimal
control laws, with performance guarantees, when the optimal control is too
hard to find
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