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Lecture 10

Linear Quadratic Stochastic Control with
Partial State Observation

• partially observed linear-quadratic stochastic control problem

• estimation-control separation principle

• solution via dynamic programming
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Linear stochastic system

• linear dynamical system, over finite time horizon:

xt+1 = Axt + But + wt, t = 0, . . . , N − 1

with state xt, input ut, and process noise wt

• linear noise corrupted observations:

yt = Cxt + vt, t = 0, . . . , N

yt is output, vt is measurement noise

• x0 ∼ N (0, X), wt ∼ N (0, W ), vt ∼ N (0, V ), all independent
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Causal output feedback control policies

• causal feedback policies:

– input must be function of past and present outputs
– roughly speaking: current state xt is not known

• ut = φt(Yt), t = 0, . . . , N − 1

– Yt = (y0, . . . , yt) is output history at time t

– φt : Rp(t+1) → Rm called the control policy at time t

• closed-loop system is

xt+1 = Axt + Bφt(Yt) + wt, yt = Cxt + vt

• x0, . . . , xN , y0, . . . , yN , u0, . . . , uN−1 are all random
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Stochastic control with partial observations

• objective:

J = E

(

N−1
∑

t=0

(

xT
t Qxt + uT

t Rut

)

+ xT
NQxN

)

with Q ≥ 0, R > 0

• partially observed linear quadratic stochastic control problem
(a.k.a. LQG problem):

choose output feedback policies φ0, . . . , φN−1 to minimize J
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Solution

• optimal policies are φt(Yt) = Kt E(xt|Yt)

– Kt is optimal feedback gain matrix for associated LQR problem
– E(xt|Yt) is the MMSE estimate of xt given measurements Yt

(can be computed using Kalman filter)

• called separation principle: optimal policy consists of

– estimating state via MMSE (ignoring the control problem)
– using estimated state as if it were the actual state, for purposes of

control
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LQR control gain computation

• define PN = Q, and for t = N, . . . , 1,

Pt−1 = ATPtA + Q − ATPtB(R + BTPtB)−1BTPtA

• set Kt = −(R + BTPt+1B)−1BTPt+1A, t = 0, . . . , N − 1

• Kt does not depend on data C, X, W , V
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Kalman filter current state estimate

• define

– x̂t = E(xt|Yt) (current state estimate)
– Σt = E(xt − x̂t)(xt − x̂t)

T (current state estimate covariance)
– Σt+1|t = AΣtA

T + W (next state estimate covariance)

• start with Σ0|−1 = X; for t = 0, . . . , N ,

Σt = Σt|t−1 − Σt|t−1C
T (CΣt|t−1C

T + V )−1CΣt|t−1,

Σt+1|t = AΣtA
T + W

• define Lt = Σt|t−1C
T (CΣt|t−1C

T + V )−1, t = 0, . . . , N
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• set x̂0 = L0y0; for t = 0, . . . , N − 1,

x̂t+1 = Ax̂t + But + Lt+1et+1, et+1 = yt+1 − C(Ax̂t + But)

– et+1 is next output prediction error
– et+1 ∼ N (0, CΣt+1|tC

T + V ), independent of Yt

• Kalman filter gains Lt do not depend on data B, Q, R
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Solution via dynamic programming

• let Vt(Yt) be optimal value of LQG problem, from t on, conditioned on
the output history Yt:

Vt(Yt) = min
φt,...,φN−1

E

(

N−1
∑

τ=t

(xT
τ Qxτ + uT

τ Ruτ) + xT
NQxN

∣

∣

∣

∣

∣

Yt

)

• we’ll show that Vt is a quadratic function plus a constant, in fact,

Vt(Yt) = x̂T
t Ptx̂t + qt, t = 0, . . . , N,

where Pt is the LQR cost-to-go matrix (x̂t is a linear function of Yt)
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• we have

VN(YN) = E(xT
NQxN |YN) = x̂T

NQx̂N + Tr(QΣN)

(using xN |YN ∼ N (x̂N ,ΣN)) so PN = Q, qN = Tr(QΣN)

• dynamic programming (DP) equation is

Vt(Yt) = min
ut

E
(

xT
t Qxt + uT

t Rut + Vt+1(Yt+1)|Yt

)

(and argmin, which is a function of Yt, is optimal input)

• with Vt+1(Yt+1) = x̂T
t+1Pt+1x̂t+1 + qt+1, DP equation becomes

Vt(Yt) = min
ut

E
(

xT
t Qxt + uT

t Rut + x̂T
t+1Pt+1x̂t+1 + qt+1|Yt

)

= E(xT
t Qxt|Yt) + qt+1 + min

ut

(

uT
t Rut + E(x̂T

t+1Pt+1x̂t+1|Yt)
)
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• using xt|Yt ∼ N (x̂t, Σt), the first term is

E(xT
t Qxt|Yt) = x̂T

t Qx̂t + Tr(QΣt)

• using
x̂t+1 = Ax̂t + But + Lt+1et+1,

with et+1 ∼ N (0, CΣt+1|tC
T + V ), independent of Yt, we get

E(x̂T
t+1Pt+1x̂t+1|Yt) = x̂T

t ATPt+1Ax̂t + uT
t BTPt+1But + 2x̂T

t ATPt+1But

+ Tr
(

(LT
t+1Pt+1Lt+1)(CΣt+1|tC

T + V )
)

• using Lt+1 = Σt+1|tC
T (CΣt+1|tC

T + V )−1, last term becomes

Tr(Pt+1Σt+1|tC
T (CΣt+1|tC

T+V )−1CΣt+1|t) = TrPt+1(Σt+1|t−Σt+1)
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• combining all terms we get

Vt(Yt) = x̂T
t (Q + ATPt+1A)x̂t + qt+1 + Tr(QΣt)

+ TrPt+1(Σt+1|t − Σt+1)

+ min
ut

(uT
t (R + BTPt+1B)ut + 2x̂T

t ATPt+1But)

• minimization same as in deterministic LQR problem

• thus optimal policy is φ⋆
t (Yt) = Ktx̂t, with

Kt = −(R + BTPt+1B)−1BTPt+1A

• plugging in optimal ut we get Vt(Yt) = x̂T
t Ptx̂t + qt, where

Pt = ATPt+1A + Q − ATPt+1B(R + BTPt+1B)−1BTPt+1A

qt = qt+1 + Tr(QΣt) + TrPt+1(Σt+1|t − Σt+1)

• recursion for Pt is exactly the same as for deterministic LQR
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Optimal objective

• optimal LQG cost is

J⋆ = EV0(y0) = q0 + E x̂T
0 P0x̂0 = q0 + TrP0(X − Σ0)

using x̂0 ∼ N (0, X − Σ0)

• using qN = TrQΣN and

qt = qt+1 + Tr(QΣt) + TrPt+1(Σt+1|t − Σt+1)

we get

J⋆ =

N
∑

t=0

Tr(QΣt) +

N
∑

t=0

TrPt(Σt|t−1 − Σt)

using Σ0|−1 = X
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• we can write this as

J⋆ =

N
∑

t=0

Tr(QΣt)+

N
∑

t=1

TrPt(AΣt−1A
T +W −Σt)+Tr(P0(X −Σ0))

which simplifies to
J⋆ = Jlqr + Jest

where

Jlqr = Tr(P0X) +

N
∑

t=1

Tr(PtW ),

Jest = Tr((Q − P0)Σ0) +

N
∑

t=1

Tr((Q − Pt)Σt) + Tr(PtAΣt−1A
T )

– Jlqr is the stochastic LQR cost, i.e., the optimal objective if you
knew the state

– Jest is the cost of not knowing (i.e., estimating) the state
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• when state measurements are exact (C = I, V = 0), we have Σt = 0,
so we get

J⋆ = Jlqr = Tr(P0X) +

N
∑

t=1

Tr(PtW )
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Infinite horizon LQG

• choose policies to minimize infinite horizon average stage cost

J = lim
N→∞

1

N
E

N−1
∑

t=0

(

xT
t Qxt + uT

t Rut

)

• optimal average stage cost is

J⋆ = Tr(QΣ) + Tr(P (Σ̃ − Σ))

where P and Σ̃ are PSD solutions of AREs

P = Q + ATPA − ATPB(R + BTPB)−1BTPA,

Σ̃ = AΣ̃AT + W − AΣ̃CT (CΣ̃CT + V )−1CΣ̃AT

and Σ = Σ̃ − Σ̃CT (CΣ̃CT + V )−1CΣ̃
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• optimal average stage cost doesn’t depend on X

• (an) optimal policy is

ut = Kx̂t, x̂t+1 = Ax̂t + But + L(yt+1 − C(Ax̂t + But))

where

K = −(R + BTPB)−1BTPA, L = Σ̃CT (CΣ̃CT + V )−1

• K is steady-state LQR feedback gain

• L is steady-state Kalman filter gain
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Example

• system with n = 5 states, m = 2 inputs, p = 3 outputs; infinite horizon

• A, B, C chosen randomly; A scaled so maxi |λi(A)| = 1

• Q = I, R = I, X = I, W = 0.5I, V = 0.5I

• we compare LQG with the case where state is known (stochastic LQR)
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Sample trajectories

sample trace of (xt)1 and (ut)1 in steady state
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Cost histogram

histogram of stage costs for 5000 steps in steady state
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