Lecture ¹⁰ Linear Quadratic Stochastic Control withPartial State Observation

- partially observed linear-quadratic stochastic control problem
- estimation-control separation principle
- solution via dynamic programming

Linear stochastic system

• linear dynamical system, over finite time horizon:

$$
x_{t+1} = Ax_t + Bu_t + w_t, \qquad t = 0, ..., N-1
$$

with state x_t , input u_t , and process noise w_t

• linear noise corrupted observations:

$$
y_t = Cx_t + v_t, \qquad t = 0, \dots, N
$$

 y_t is output, v_t is measurement noise

 \bullet x_0 $v_0 \sim \mathcal{N}(0, X)$, w_t $t \sim \mathcal{N}(0, W)$, v_t $\tau_t \sim \mathcal{N}(0, V)$, all independent

Causal output feedback control policies

- causal feedback policies:
	- input must be function of past and present outputs
	- $-$ roughly speaking: current state x_t is *not known*

$$
\bullet \ \ u_t = \phi_t(Y_t), \quad t = 0, \dots, N-1
$$

-
$$
Y_t = (y_0, \dots, y_t)
$$
 is output history at time t
- $\phi_t : \mathbf{R}^{p(t+1)} \to \mathbf{R}^m$ called the control policy at time t

• closed-loop system is

$$
x_{t+1} = Ax_t + B\phi_t(Y_t) + w_t, \qquad y_t = Cx_t + v_t
$$

•
$$
x_0, \ldots, x_N, y_0, \ldots, y_N, u_0, \ldots, u_{N-1}
$$
 are all random

Stochastic control with partial observations

• objective:

$$
J = \mathbf{E}\left(\sum_{t=0}^{N-1} \left(x_t^T Q x_t + u_t^T R u_t\right) + x_N^T Q x_N\right)
$$

with $Q\geq0, \, R>0$

• partially observed linear quadratic stochastic control problem(a.k.a. LQG problem):

choose output feedback policies $\phi_0, \ldots, \phi_{N-1}$ to minimize J

Solution

- optimal policies are $\phi_t(Y_t) = K_t \mathbf{E}(x_t|Y_t)$
	- – K_t is optimal feedback gain matrix for associated LQR problem
	- $\mathbf{E}(x_t|Y_t)$ is the MMSE estimate of x_t given measurements Y_t (can be computed using Kalman filter)
- called separation principle: optimal policy consists of
	- – $-$ estimating state via MMSE (ignoring the control problem)
	- using estimated state as if it were the actual state, for purposes of control

LQR control gain computation

• define
$$
P_N = Q
$$
, and for $t = N, \ldots, 1$,

$$
P_{t-1} = A^T P_t A + Q - A^T P_t B (R + B^T P_t B)^{-1} B^T P_t A
$$

• set
$$
K_t = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A
$$
, $t = 0, ..., N - 1$

 \bullet $\ K_t$ does not depend on data $C, \ X, \ W, \ V$

Kalman filter current state estimate

• define

-
$$
\hat{x}_t = \mathbf{E}(x_t|Y_t)
$$
 (current state estimate)
\n- $\Sigma_t = \mathbf{E}(x_t - \hat{x}_t)(x_t - \hat{x}_t)^T$ (current state estimate covariance)
\n- $\Sigma_{t+1|t} = A\Sigma_t A^T + W$ (next state estimate covariance)

• start with
$$
\Sigma_{0|-1} = X
$$
; for $t = 0, ..., N$,

$$
\Sigma_t = \Sigma_{t|t-1} - \Sigma_{t|t-1} C^T (C \Sigma_{t|t-1} C^T + V)^{-1} C \Sigma_{t|t-1},
$$

$$
\Sigma_{t+1|t} = A \Sigma_t A^T + W
$$

• define
$$
L_t = \sum_{t|t-1} C^T (C \sum_{t|t-1} C^T + V)^{-1}
$$
, $t = 0, ..., N$

• set $\hat{x}_0 = L_0 y_0$; for $t = 0, \ldots, N - 1$,

$$
\hat{x}_{t+1} = A\hat{x}_t + Bu_t + L_{t+1}e_{t+1}, \quad e_{t+1} = y_{t+1} - C(A\hat{x}_t + Bu_t)
$$

-
$$
e_{t+1}
$$
 is next output prediction error
- $e_{t+1} \sim \mathcal{N}(0, C\Sigma_{t+1|t}C^T + V)$, independent of Y_t

 $\bullet\,$ Kalman filter gains L_t do not depend on data $B,\,Q,\,R$

Solution via dynamic programming

 $\bullet\,$ let $\,V_t(Y_t)\,$ be optimal value of <code>LQG</code> problem, from t on, conditioned on the output history $Y_t\!\colon$

$$
V_t(Y_t) = \min_{\phi_t, ..., \phi_{N-1}} \mathbf{E} \left(\sum_{\tau=t}^{N-1} (x_\tau^T Q x_\tau + u_\tau^T R u_\tau) + x_N^T Q x_N \middle| Y_t \right)
$$

 $\bullet\,$ we'll show that V_t is a quadratic function plus a constant, in fact,

$$
V_t(Y_t) = \hat{x}_t^T P_t \hat{x}_t + q_t, \quad t = 0, \dots, N,
$$

where P_t is the LQR cost-to-go matrix $(\hat{x}_t$ is a linear function of $Y_t)$

• we have

$$
V_N(Y_N) = \mathbf{E}(x_N^T Q x_N | Y_N) = \hat{x}_N^T Q \hat{x}_N + \mathbf{Tr}(Q \Sigma_N)
$$

(using $x_N | Y_N \sim \mathcal{N}(\hat{x}_N, \Sigma_N)$) so $P_N = Q$, $q_N = \mathbf{Tr}(Q \Sigma_N)$

• dynamic programming (DP) equation is

$$
V_t(Y_t) = \min_{u_t} \mathbf{E} \left(x_t^T Q x_t + u_t^T R u_t + V_{t+1}(Y_{t+1}) | Y_t \right)
$$

(and argmin, which is a function of Y_t , is optimal input)

• with $V_{t+1}(Y_{t+1}) = \hat{x}_{t+1}^T P_{t+1}\hat{x}_{t+1} + q_{t+1}$, DP equation becomes

$$
V_t(Y_t) = \min_{u_t} \mathbf{E} \left(x_t^T Q x_t + u_t^T R u_t + \hat{x}_{t+1}^T P_{t+1} \hat{x}_{t+1} + q_{t+1} | Y_t \right)
$$

= $\mathbf{E} (x_t^T Q x_t | Y_t) + q_{t+1} + \min_{u_t} \left(u_t^T R u_t + \mathbf{E} (\hat{x}_{t+1}^T P_{t+1} \hat{x}_{t+1} | Y_t) \right)$

• using $x_t|Y_t \sim \mathcal{N}(\hat{x}_t, \Sigma_t)$, the first term is

$$
\mathbf{E}(x_t^T Q x_t | Y_t) = \hat{x}_t^T Q \hat{x}_t + \mathbf{Tr}(Q \Sigma_t)
$$

•using

$$
\hat{x}_{t+1} = A\hat{x}_t + Bu_t + L_{t+1}e_{t+1},
$$

with $e_{t+1} \sim \mathcal{N}(0, C\Sigma_{t+1|t}C^T + V)$, independent of Y_t , we get

$$
\mathbf{E}(\hat{x}_{t+1}^T P_{t+1} \hat{x}_{t+1} | Y_t) = \hat{x}_t^T A^T P_{t+1} A \hat{x}_t + u_t^T B^T P_{t+1} B u_t + 2 \hat{x}_t^T A^T P_{t+1} B u_t + \mathbf{Tr} ((L_{t+1}^T P_{t+1} L_{t+1}) (C \Sigma_{t+1|t} C^T + V))
$$

• using $L_{t+1} = \Sigma_{t+1|t} C^T (C \Sigma_{t+1|t} C^T + V)^{-1}$, last term becomes

$$
\mathbf{Tr}(P_{t+1}\Sigma_{t+1|t}C^T(C\Sigma_{t+1|t}C^T+V)^{-1}C\Sigma_{t+1|t}) = \mathbf{Tr}\,P_{t+1}(\Sigma_{t+1|t}-\Sigma_{t+1})
$$

• combining all terms we get

$$
V_t(Y_t) = \hat{x}_t^T (Q + A^T P_{t+1} A) \hat{x}_t + q_{t+1} + \text{Tr}(Q\Sigma_t) + \text{Tr } P_{t+1} (\Sigma_{t+1|t} - \Sigma_{t+1}) + \min_{u_t} (u_t^T (R + B^T P_{t+1} B) u_t + 2 \hat{x}_t^T A^T P_{t+1} B u_t)
$$

- minimization same as in deterministic LQR problem
- $\bullet\,$ thus optimal policy is $\phi_t^{\star}(Y_t)=K_t\hat{x}_t$, with

$$
K_t = -(R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A
$$

•• plugging in optimal u_t we get $V_t(Y_t) = \hat{x}_t^T P_t \hat{x}_t + q_t$, where

$$
P_t = A^T P_{t+1} A + Q - A^T P_{t+1} B (R + B^T P_{t+1} B)^{-1} B^T P_{t+1} A
$$

\n
$$
q_t = q_{t+1} + \text{Tr}(Q\Sigma_t) + \text{Tr} P_{t+1} (\Sigma_{t+1|t} - \Sigma_{t+1})
$$

 $\bullet\,$ recursion for P_t is exactly the same as for deterministic ${\sf LQR}$

Optimal objective

• optimal LQG cost is

$$
J^* = \mathbf{E} V_0(y_0) = q_0 + \mathbf{E} \hat{x}_0^T P_0 \hat{x}_0 = q_0 + \mathbf{Tr} P_0 (X - \Sigma_0)
$$

using
$$
\hat{x}_0 \sim \mathcal{N}(0, X - \Sigma_0)
$$

 $\bullet\,$ using $q_N = {\rm Tr}\, Q \Sigma_N$ and

$$
q_t = q_{t+1} + \mathbf{Tr}(Q\Sigma_t) + \mathbf{Tr} P_{t+1}(\Sigma_{t+1|t} - \Sigma_{t+1})
$$

we get

$$
J^* = \sum_{t=0}^N \mathbf{Tr}(Q\Sigma_t) + \sum_{t=0}^N \mathbf{Tr} P_t(\Sigma_{t|t-1} - \Sigma_t)
$$

using $\Sigma_{0|-1} = X$

• we can write this as

$$
J^{\star} = \sum_{t=0}^{N} \operatorname{Tr}(Q\Sigma_{t}) + \sum_{t=1}^{N} \operatorname{Tr} P_{t}(A\Sigma_{t-1}A^{T} + W - \Sigma_{t}) + \operatorname{Tr}(P_{0}(X - \Sigma_{0}))
$$

which simplifies to

$$
J^{\star} = J_{\rm lqr} + J_{\rm est}
$$

where

$$
J_{\text{lqr}} = \mathbf{Tr}(P_0 X) + \sum_{t=1}^{N} \mathbf{Tr}(P_t W),
$$

$$
J_{\text{est}} = \mathbf{Tr}((Q - P_0) \Sigma_0) + \sum_{t=1}^{N} \mathbf{Tr}((Q - P_t) \Sigma_t) + \mathbf{Tr}(P_t A \Sigma_{t-1} A^T)
$$

- – $\overline{}$ J_{lqr} is the stochastic LQR cost, $\it{i.e.}$, the optimal objective if you knew the state
- – $\overline{}$ J_{est} is the cost of not knowing $(i.e.,$ estimating) the state

• when state measurements are exact $(C = I, V = 0)$, we have $\Sigma_t = 0$, so we get \mathbf{r}

$$
J^* = J_{\text{Iqr}} = \text{Tr}(P_0 X) + \sum_{t=1}^{N} \text{Tr}(P_t W)
$$

Infinite horizon LQG

• choose policies to minimize infinite horizon average stage cost

$$
J = \lim_{N \to \infty} \frac{1}{N} \mathbf{E} \sum_{t=0}^{N-1} (x_t^T Q x_t + u_t^T R u_t)
$$

• optimal average stage cost is

$$
J^* = \text{Tr}(Q\Sigma) + \text{Tr}(P(\tilde{\Sigma} - \Sigma))
$$

where P and $\tilde{\Sigma}$ are PSD solutions of AREs

$$
P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A,
$$

$$
\tilde{\Sigma} = A \tilde{\Sigma} A^T + W - A \tilde{\Sigma} C^T (C \tilde{\Sigma} C^T + V)^{-1} C \tilde{\Sigma} A^T
$$

and $\Sigma = \tilde{\Sigma} - \tilde{\Sigma} C^T (C \tilde{\Sigma} C^T + V)^{-1} C \tilde{\Sigma}$

Linear Quadratic Stochastic Control with Partial State Observation

- $\bullet\,$ optimal average stage cost doesn't depend on X
- (an) optimal policy is

$$
u_t = K\hat{x}_t, \quad \hat{x}_{t+1} = A\hat{x}_t + Bu_t + L(y_{t+1} - C(A\hat{x}_t + Bu_t))
$$

where

$$
K = -(R + BTP B)^{-1} BT P A, \qquad L = \tilde{\Sigma} CT (C \tilde{\Sigma} CT + V)^{-1}
$$

- \bullet $\ K$ is steady-state LQR feedback gain
- \bullet $\ L$ is steady-state Kalman filter gain

Example

- $\bullet\,$ system with $n=5$ states, $m=2$ inputs, $p=3$ outputs; infinite horizon
- A, B, C chosen randomly; A scaled so $\max_i |\lambda_i(A)| = 1$
- $Q = I$, $R = I$, $X = I$, $W = 0.5I$, $V = 0.5I$
- $\bullet\,$ we compare LQG with the case where state is known (stochastic LQR)

Sample trajectories

sample trace of $(x_t)_1$ and $(u_t)_1$ in steady state

blue: LQG, red: stochastic LQR

Linear Quadratic Stochastic Control with Partial State Observation

Cost histogram

histogram of stage costs for 5000 steps in steady state

Linear Quadratic Stochastic Control with Partial State Observation