EE363 Winter 2008-09

Lecture 10

Linear Quadratic Stochastic Control with
Partial State Observation

e partially observed linear-quadratic stochastic control problem
e estimation-control separation principle

e solution via dynamic programming
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Linear stochastic system

e linear dynamical system, over finite time horizon:
i1 = Az + Buy + wy, t=0,...,N—1
with state x;, input u;, and process noise w;
e linear noise corrupted observations:
vy = Cxy + vy, t=0,...,N
Y+ 1S output, v; Is measurement noise

o 2o ~N(0,X), wy ~N(0,W), vy, ~N(0,V), all independent
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Causal output feedback control policies

causal feedback policies:

— input must be function of past and present outputs
— roughly speaking: current state x; is not known

ut:¢t(§/t)r t:O,,N—l

- Y: = (Yo, ---,y¢) is output history at time ¢
— @ RPUFY _ R™ called the control policy at time ¢

closed-loop system is

Tir1 = Axe + Bo (Vi) + wy, yr = Cwy + vy

X0y .-+ TN, Yo,---,YN, Ug,-..,UnN_1 are all random
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Stochastic control with partial observations

e objective:

N—-1
J=E ( (:UtTth + ufRut) + x%QxN>
0

t=

with @ >0, R >0

e partially observed linear quadratic stochastic control problem
(a.k.a. LQG problem):

choose output feedback policies ¢g,...,pn_1 to minimize J
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Solution

e optimal policies are ¢:(Y;) = K; E(x:|Y3)

— K is optimal feedback gain matrix for associated LQR problem
— E(x4|Y;) is the MMSE estimate of x; given measurements Y;
(can be computed using Kalman filter)

e called separation principle: optimal policy consists of

— estimating state via MMSE (ignoring the control problem)
— using estimated state as if it were the actual state, for purposes of
control
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LQR control gain computation

e define Py = (@, and fort =N,..., 1,

Po_1=A"PA+Q - A"PB(R+B"PB)"'B'P,A

e set Kt = —(R + BTPt+1B)_1BTPt+1A, t = O, ce ,N —1

e K, does not dependondata C, X, W,V
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Kalman filter current state estimate

e define

— 23 = E(24|Y}) (current state estimate)
- % = E(xy — 2¢)(xs — 24)1 (current state estimate covariance)
— Y1 = AS AT + W (next state estimate covariance)

e start with X _; = X; fort =0,..., N,

2t = g1 — Et|t—1CT(CEt|t—1CT + V)_lCEW_l,
Et—|—1|t — AEtAT —l— W

o define Ly = ¥, 1CT(CEyy 1 CT+ V)1, t=0,...,N
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e set Tg = Loyo; fort=0,...,N —1,
Try1 = A%y + Buy + Lijrer11, €1 = Ye41 — C(AZy + Buy)

— eyy1 IS next output prediction error
— esp1 ~ N(0, CZt+1|tCT + V'), independent of Y;

e Kalman filter gains L; do not depend on data B, @), R
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Solution via dynamic programming

o let V;(Y;) be optimal value of LQG problem, from ¢ on, conditioned on
the output history Y;:

N-1
Vi(Yy) = N mg}\f_l E (Z (:I:ZQ:UT + uZRuT) + x%QxN Yt>

T=t

e we'll show that V; is a quadratic function plus a constant, in fact,
%(n)zigptft+qt, t:O,...,N,

where P, is the LQR cost-to-go matrix (¢ is a linear function of Y;)
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e we have
Vn(Yn) = E(ziQzn|YN) = 23 Qin + Tr(QXN)
(using zn|[Yn ~ N(Zn,EnN)) so Py = Q, qv = Tr(QXy)
e dynamic programming (DP) equation is

V;(Y;) = quLiIlE (a:fot + UfRut + Vt+1(Y;5+1)|Yt)

t

(and argmin, which is a function of Y;, is optimal input)
o with Vi41(Yit1) = @111 Piy1@41 + qe+1, DP equation becomes

Vi(Y)

. T T AT A
HrLILlIlE (ZCt Qﬂft + Uy Rut + xt+1Pt+1azt+1 + qt_|_1|Y;§)
t
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o using x4|Y; ~ N (24, %), the first term is

E(z{ Qu|Y:) = &/ Q& + Tr(Q%y)

® using
Ter1 = ATy + Bus + Lygpqee41,
with e; 1 ~ N(0, C’Zt+1|tCT + V), independent of Y;, we get

E(2/ Piy1841Y:) = 2 A" Piy1 Ay +uf B' Py Buy + 23] A" Py By

+ Tr (L{{1Pry1L141) (CE1eCT + V)

o using L1 =%, 1,CT(CE411:.CT + V)~ last term becomes

Tr(Pis1 X1t CT (CZi 1 CT+V) IO p1)e) = Tr Pop1 (Si1)i—St41)
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e combining all terms we get

Vi(Ys) = & (Q+ AT Py A)dy + grr + Tr(Q%)
+ Tr Pry1 (B — Xig1)
+ mm(u?(R + BTPt+1B)’LLt + 25%?ATP75_|_1BU75)
Ut

e minimization same as in deterministic LQR problem
e thus optimal policy is ¢} (Y;) = K2y, with
K,=—(R+B'P . B)"'B"P 1A
e plugging in optimal u; we get V;(Y;) = &1 Pi&; + q;, where

P, = A'P . A+Q—-A"P,.\B(R+B'"P..1B)"'B'"P. A
@ = Q1+ Tre(Q3) +Tr Py (XN — Big1)

e recursion for P, is exactly the same as for deterministic LQR
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Optimal objective

e optimal LQG cost is
J* =EVo(yo) = qo + Edj PoZo = qo + Tr Po(X — Xo)
using &g ~ N (0, X — %)
e using gy = Tr QX and

gt = qt+1 + Tr(QX:) + Tr Py (Xip1pe — Ber1)

we get
N N
J* = Tr(QSy) + Y TrP(Sy—q — X)
t=0 t=0

using 2pj—1 = X
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e we can write this as

N N
J* — Z I‘I‘(ta) + Z TI'Pt(AEt_lAT + W — Zt) —I—TI'(P()(X _ ZO))
t=0 t=1

which simplifies to
J* = qur + Jest

where
N
Mg = Tr(PoX)+ ) Tr(BW),
t=1
N
Jest = Tr((Q—P)So) + Y Tr((Q — P)%y) + Tr(PAS, 1 AT)
t=1

— Jiqr is the stochastic LQR cost, i.e., the optimal objective if you
knew the state
— Jest is the cost of not knowing (i.e., estimating) the state
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e when state measurements are exact (C' =1, V =0), we have 3; = 0,

so we get
N

J* = Jig = Tr(PoX) + ) Tr(PW)

t=1
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Infinite horizon LQG

e choose policies to minimize infinite horizon average stage cost

N-1
.1
J = ]\;EHOO N E ; (xf@:z:t + utTRut)

e optimal average stage cost is
J* =Tr(QY) + Tr(P(X - %))
where P and ¥ are PSD solutions of AREs

P = Q+A"PA—A"PB(R+B'PB)"'B'PA,

> = ASAT+wW —AxcT(cscT +v)~tozAT
and ¥ =3 — 2T (CECT +V)~1Ox
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e optimal average stage cost doesn’'t depend on X
e (an) optimal policy is
ur = K2y, 2411 = AZ¢ + Buy + L(ysa1 — C(AZ + Buy))
where

K =—(R+BTPB)"'BTPA, L=3xctczct+v)!

e K is steady-state LQR feedback gain

e [ is steady-state Kalman filter gain

Linear Quadratic Stochastic Control with Partial State Observation 10-17



Example

e system with n = 5 states, m = 2 inputs, p = 3 outputs; infinite horizon
e A, B, C chosen randomly; A scaled so max; |A\;(A)| =1
e Q=I,R=1 X=1 W=0.5I,V=0.5I

e we compare LQG with the case where state is known (stochastic LQR)
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Sample trajectories

sample trace of (x;); and (u); in steady state
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blue: LQG, red: stochastic LQR
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Cost histogram

histogram of stage costs for 5000 steps in steady state
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