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Lecture 6

Realization Theory and Subspace Methods for
System Identification

• linear-quadratic stochastic control problem

• solution via dynamic programming
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Linear stochastic system

• linear dynamical system, over finite time horizon:

xt+1 = Axt + But + wt, t = 0, . . . , N − 1

• wt is the process noise or disturbance at time t

• wt are IID with Ewt = 0, Ewtw
T
t = W

• x0 is independent of wt, with Ex0 = 0, Ex0x
T
0 = X
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Control policies

• state-feedback control: ut = φt(xt), t = 0, . . . , N − 1

• φt : Rn → Rm called the control policy at time t

• roughly speaking: we choose input after knowing the current state, but
before knowing the disturbance

• closed-loop system is

xt+1 = Axt + Bφt(xt) + wt, t = 0, . . . , N − 1

• x0, . . . , xN , u0, . . . , uN−1 are random
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Stochastic control problem

• objective:

J = E

(

N−1
∑

t=0

(

xT
t Qxt + uT

t Rut

)

+ xT
NQfxN

)

with Q, Qf ≥ 0, R > 0

• J depends (in complex way) on control policies φ0, . . . , φN−1

• linear-quadratic stochastic control problem: choose control policies
φ0, . . . , φN−1 to minimize J

(‘linear’ refers to the state dynamics; ‘quadratic’ to the objective)

• an infinite dimensional problem: variables are functions φ0, . . . , φN−1
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Solution via dynamic programming

• let Vt(z) be optimal value of objective, from t on, starting at xt = z

– VN(z) = zTQfz

– J⋆ = EV0(x0) (expectation over x0)

• Vt can be found by backward recursion: for t = N − 1, . . . , 0

Vt(z) = zTQz + inf
v

{

vTRv + EVt+1(Az + Bv + wt)
}

– expectation is over wt

– we do not know where we will land, when we take ut = v

• optimal policies have form

φ⋆
t (xt) = argmin

v

{

vTRv + EVt+1(Axt + Bv + wt)
}
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Explicit form

• let’s show (via recursion) value functions are quadratic, with form

Vt(xt) = xT
t Ptxt + qt, t = 0, . . . , N,

with Pt ≥ 0

• PN = QN , qN = 0

• now assume that Vt+1(z) = zTPt+1z + qt+1
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• Bellman recursion is

Vt(z) = zTQz + inf
v
{vTRv +

E((Az + Bv + wt)
TPt+1(Az + Bv + wt) + qt+1)}

= zTQz + Tr(WPt+1) + qt+1 +

inf
v
{vTRv + (Az + Bv)TPt+1(Az + Bv)}

– we use E(wT
t Pt+1wt) = Tr(WPt+1)

– same recursion as deterministic LQR, with added constant

• optimal policy is linear state feedback: φ⋆
t (xt) = Ktxt,

Kt = −(BTPt+1B + R)−1BTPt+1A

– same policy as deterministic LQR
– strangely, does not depend on X or W
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• plugging in optimal w gives Vt(z) = zTPtz + qt, with

Pt = ATPt+1A − ATPt+1B(BTPt+1B + R)−1BTPt+1A + Q

qt = qt+1 + Tr(WPt+1)

– first recursion same as for deterministic LQR
– second term is just a running sum

• optimal cost is

J⋆ = EV0(x0)

= Tr(XP0) + q0

= Tr(XP0) +
N

∑

t=1

Tr(WPt)
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• interpretation:

– xT
0 P0x0 is optimal cost of deterministic LQR, with

w0 = · · · = wN−1 = 0
– Tr(XP0) is average optimal LQR cost, with w0 = · · · = wN−1 = 0
– Tr(WPt) is average optimal LQR cost, for Ext = 0, Extx

T
t = W ,

wt = · · · = wN−1 = 0
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Infinite horizon

• choose policies to minimize average stage cost

J = lim
N→∞

1

N
E

N−1
∑

t=0

(

xT
t Qxt + uT

t Rut

)

• optimal average stage cost is

J⋆ = Tr(WPss)

where Pss satisfies the ARE

Pss = Q + ATPssA − ATPssB(R + BTPssB)−1BTPssA

– optimal average stage cost doesn’t depend on X
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• (an) optimal policy is constant linear state feedback

ut = Kssxt

where
Kss = −(R + BTPssB)−1BTPssA

– Kss is steady-state LQR feedback gain
– doesn’t depend on X, W
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Example

• system with n = 5 states, m = 2 inputs, horizon N = 30

• A, B chosen randomly; A scaled so maxi |λi(A)| < 1

• Q = I, Qf = 10I, R = I

• x0 ∼ N (0, X), X = 10I

• wt ∼ N (0, W ), W = 0.5I
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Sample trajectories

sample trace of (xt)1 and (ut)1
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blue: optimal stochastic control, red: no control (u0 = · · · = uN−1 = 0)
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Cost histogram

cost histogram for 1000 simulations
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Comparisons

we compared optimal stochastic control (J⋆ = 224.2) with

• ‘prescient’ control

– decide input sequence with full knowledge of future disturbances
– u0, . . . , uN−1 computed assuming all wt are known
– Jpre = 137.6

• ‘open-loop’ control

– u0, . . . , uN−1 depend only on x0

– u0, . . . , uN−1 computed assuming w0 = · · · = wN−1 = 0
– Jol = 423.7

• no control

– u0 = · · · = uN−1 = 0
– Jnc = 442.0
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