EE363 Winter 2008-09

Lecture 6

Realization Theory and Subspace Methods for
System ldentification

e linear-quadratic stochastic control problem

e solution via dynamic programming
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Linear stochastic system

e linear dynamical system, over finite time horizon:

xt+1:Axt—|—But—|—wt, t:O,,N—l

e w; is the process noise or disturbance at time ¢
e w; are |ID with Ew; = 0, Ewtwf =W

e 1g is independent of w;, with Ezg =0, Ezgzd = X
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Control policies

e state-feedback control: u; = ¢¢(xy), t=0,...,N—1
e ¢;: R" — R™ called the control policy at time ¢

e roughly speaking: we choose input after knowing the current state, but
before knowing the disturbance

e closed-loop system is

xt+1:Axt+B¢t(:Et)+wt7 tZO,,N—l

® zo,..., TN, Up,...,UN_1 are random
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Stochastic control problem

e objective:
N-1
J=E Z (a:tTQajt + ufRut) +nQ TN

t=0

with @, Q¢ >0, R >0
e J depends (in complex way) on control policies ¢q, ..., dn_1

e linear-quadratic stochastic control problem: choose control policies
gb()) c ooy ¢N_1 to minimize J

(‘linear’ refers to the state dynamics; ‘quadratic’ to the objective)

e an infinite dimensional problem: variables are functions ¢q,...,onN_1
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Solution via dynamic programming

e let V;(z) be optimal value of objective, from t on, starting at z; = 2

- Vn(2) = 2" Qg2
— J*=EVy(zg) (expectation over xg)

e 1/ can be found by backward recursion: fort =N —1,...,0

Vi(z) = 2" Qz + inf {v" Rv + EVyy1(Az + Bv+ wy) }

— expectation Is over w;
— we do not know where we will land, when we take u; = v

e optimal policies have form

¢ (x¢) = argmin {v' Rv + E Vi1 (Az + Bo + wy) }
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Explicit form

e let's show (via recursion) value functions are quadratic, with form
V;g(iﬁt):ﬂ?itrptiﬁtﬂ—qt, t:O,...,N,

o P =Qn,qn =0

e now assume that Vi 1(2) = 2T Pip12 + qi41
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e Bellman recursion is

Vi(z) = 2'Qz+inf{v" Rv+

E((AZ + Buv + wt)TPt+1(Az + Buv + wt) + Qt+1)}
= 2'Qz+ Tr(WPi1) 4 g1 +
inf{v! Rv 4+ (Az + Bv)' P.y1(Az + Bv)}

— We€ use E(w;ijlet) — TI'(WPt_|_1>
— same recursion as deterministic LQR, with added constant

e optimal policy is linear state feedback: ¢ (x;) = Kyxy,
Ki=—(B"P,,1B+R)"'B"P. 1A

— same policy as deterministic LQR
— strangely, does not depend on X or W
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e plugging in optimal w gives V;(2) = 21 Pz + ¢4, with

P, = AP A— AP \B(B'P,.,1\B+R)"'B"P1A+Q
¢ = G+1+ Tr(WP)

— first recursion same as for deterministic LQR
— second term is just a running sum

e optimal cost is

J* p— EV()(ZC())
= Tr(XR)+ qo

= Tr(XP)+)» Tr(WP)

t=1
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e Interpretation:

— a2 Py is optimal cost of deterministic LQR, with

Wo=-=wn_1 =0

— Tr(X Fp) is average optimal LQR cost, with wg =+ =wn_1 =0

— Tr(WP,) is average optimal LQR cost, for Ex; = 0, Exx!l = W,
Wy = =wn_1=0
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Infinite horizon

e choose policies to minimize average stage cost

N-1
1 T T
J = ]\;1_%0 N E tE_O (xt Qxt + uy Rut)
e optimal average stage cost is
J* = Tr(W Py)

where P, satisfies the ARE
Py=Q+A"P A - AP B(R+ B'"P,B) 'B'P A

— optimal average stage cost doesn't depend on X
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e (an) optimal policy is constant linear state feedback
Ut = Kssxt

where
Ky =—(R+ B'P B) 'B'P A

— K is steady-state LQR feedback gain
— doesn't depend on X, W
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Example

e system with n = 5 states, m = 2 inputs, horizon N = 30
e A, B chosen randomly; A scaled so max; |\;(A)| < 1

e Q=1 Qf=10I, R=1

e 1o~ N(0,X) X =101

o w, ~N(0,W) W =0.5]
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Sample trajectories

sample trace of (x;); and (u¢)q
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blue: optimal stochastic control, red: no control (ug =--- =uny_1 = 0)
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Cost histogram

cost histogram for 1000 simulations
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Comparisons
we compared optimal stochastic control (J* = 224.2) with

e 'prescient’ control

— decide input sequence with full knowledge of future disturbances
- ug,...,uny_1 computed assuming all w; are known

— JP® =137.6

e ‘open-loop’ control

- Ug,...,uny_1 depend only on x
- Ug,...,UN_1 computed assuming wg =--- =wn_1 =0
— Jol =423.7

e no control

— J" =442.0
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