EE363 Winter 2008-09

# Lecture 6 Realization Theory and Subspace Methods for System Identification

- linear-quadratic stochastic control problem
- solution via dynamic programming

## Linear stochastic system

• linear dynamical system, over finite time horizon:

$$x_{t+1} = Ax_t + Bu_t + w_t, t = 0, \dots, N-1$$

- ullet  $w_t$  is the process noise or disturbance at time t
- $w_t$  are IID with  $\mathbf{E} w_t = 0$ ,  $\mathbf{E} w_t w_t^T = W$
- $x_0$  is independent of  $w_t$ , with  $\mathbf{E} x_0 = 0$ ,  $\mathbf{E} x_0 x_0^T = X$

## **Control policies**

- state-feedback control:  $u_t = \phi_t(x_t)$ ,  $t = 0, \dots, N-1$
- $\phi_t : \mathbf{R}^n \to \mathbf{R}^m$  called the control **policy** at time t
- roughly speaking: we choose input *after* knowing the current state, but *before* knowing the disturbance
- closed-loop system is

$$x_{t+1} = Ax_t + B\phi_t(x_t) + w_t, \qquad t = 0, \dots, N-1$$

•  $x_0, \ldots, x_N, u_0, \ldots, u_{N-1}$  are random

## Stochastic control problem

• objective:

$$J = \mathbf{E} \left( \sum_{t=0}^{N-1} \left( x_t^T Q x_t + u_t^T R u_t \right) + x_N^T Q_f x_N \right)$$

with Q,  $Q_f \ge 0$ , R > 0

- J depends (in complex way) on control policies  $\phi_0, \ldots, \phi_{N-1}$
- linear-quadratic stochastic control problem: choose control policies  $\phi_0, \dots, \phi_{N-1}$  to minimize J

('linear' refers to the state dynamics; 'quadratic' to the objective)

• an infinite dimensional problem: variables are functions  $\phi_0, \ldots, \phi_{N-1}$ 

## Solution via dynamic programming

- ullet let  $V_t(z)$  be optimal value of objective, from t on, starting at  $x_t=z$ 
  - $-V_N(z) = z^T Q_f z$
  - $-J^* = \mathbf{E} V_0(x_0)$  (expectation over  $x_0$ )
- $V_t$  can be found by backward recursion: for  $t = N 1, \dots, 0$

$$V_t(z) = z^T Q z + \inf_v \{ v^T R v + \mathbf{E} V_{t+1} (Az + Bv + w_t) \}$$

- expectation is over  $w_t$
- we do not know where we will land, when we take  $u_t=v$
- optimal policies have form

$$\phi_t^{\star}(x_t) = \underset{v}{\operatorname{argmin}} \left\{ v^T R v + \mathbf{E} V_{t+1} (A x_t + B v + w_t) \right\}$$

## **Explicit form**

• let's show (via recursion) value functions are quadratic, with form

$$V_t(x_t) = x_t^T P_t x_t + q_t, \quad t = 0, \dots, N,$$

with  $P_t \geq 0$ 

- $P_N = Q_N$ ,  $q_N = 0$
- now assume that  $V_{t+1}(z) = z^T P_{t+1} z + q_{t+1}$

Bellman recursion is

$$V_{t}(z) = z^{T}Qz + \inf_{v} \{v^{T}Rv + \mathbf{E}((Az + Bv + w_{t})^{T}P_{t+1}(Az + Bv + w_{t}) + q_{t+1})\}$$

$$= z^{T}Qz + \mathbf{Tr}(WP_{t+1}) + q_{t+1} + \inf_{v} \{v^{T}Rv + (Az + Bv)^{T}P_{t+1}(Az + Bv)\}$$

- we use  $\mathbf{E}(w_t^T P_{t+1} w_t) = \mathbf{Tr}(W P_{t+1})$
- same recursion as deterministic LQR, with added constant
- optimal policy is linear state feedback:  $\phi_t^{\star}(x_t) = K_t x_t$ ,

$$K_t = -(B^T P_{t+1} B + R)^{-1} B^T P_{t+1} A$$

- same policy as deterministic LQR
- strangely, does not depend on X or W

• plugging in optimal w gives  $V_t(z) = z^T P_t z + q_t$ , with

$$P_{t} = A^{T} P_{t+1} A - A^{T} P_{t+1} B (B^{T} P_{t+1} B + R)^{-1} B^{T} P_{t+1} A + Q$$

$$q_{t} = q_{t+1} + \mathbf{Tr}(W P_{t+1})$$

- first recursion same as for deterministic LQR
- second term is just a running sum
- optimal cost is

$$J^* = \mathbf{E} V_0(x_0)$$

$$= \mathbf{Tr}(XP_0) + q_0$$

$$= \mathbf{Tr}(XP_0) + \sum_{t=1}^{N} \mathbf{Tr}(WP_t)$$

#### • interpretation:

- $x_0^T P_0 x_0$  is optimal cost of deterministic LQR, with  $w_0 = \cdots = w_{N-1} = 0$
- $\operatorname{Tr}(XP_0)$  is average optimal LQR cost, with  $w_0 = \cdots = w_{N-1} = 0$
- $\operatorname{Tr}(WP_t)$  is average optimal LQR cost, for  $\operatorname{\mathbf{E}} x_t = 0$ ,  $\operatorname{\mathbf{E}} x_t x_t^T = W$ ,  $w_t = \cdots = w_{N-1} = 0$

#### Infinite horizon

choose policies to minimize average stage cost

$$J = \lim_{N \to \infty} \frac{1}{N} \mathbf{E} \sum_{t=0}^{N-1} \left( x_t^T Q x_t + u_t^T R u_t \right)$$

optimal average stage cost is

$$J^{\star} = \mathbf{Tr}(WP_{\mathrm{ss}})$$

where  $P_{\rm ss}$  satisfies the ARE

$$P_{\rm ss} = Q + A^T P_{\rm ss} A - A^T P_{\rm ss} B (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

- optimal average stage cost doesn't depend on  $\boldsymbol{X}$ 

• (an) optimal policy is constant linear state feedback

$$u_t = K_{\rm ss} x_t$$

where

$$K_{\rm ss} = -(R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A$$

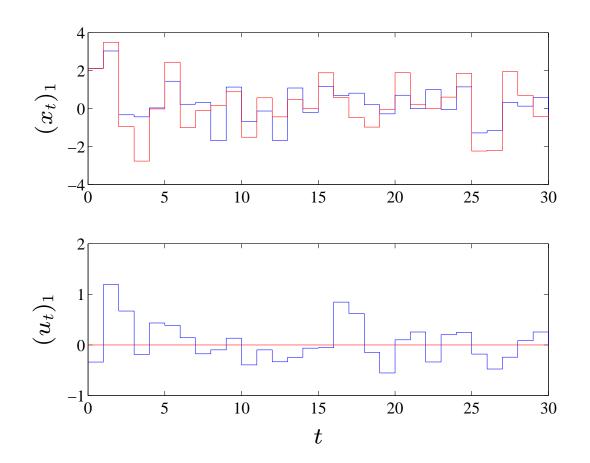
- $K_{\mathrm{ss}}$  is steady-state LQR feedback gain
- doesn't depend on X, W

## **Example**

- ullet system with n=5 states, m=2 inputs, horizon N=30
- A, B chosen randomly; A scaled so  $\max_i |\lambda_i(A)| < 1$
- Q = I,  $Q_f = 10I$ , R = I
- $x_0 \sim \mathcal{N}(0, X)$ , X = 10I
- $w_t \sim \mathcal{N}(0, W)$ , W = 0.5I

## **Sample trajectories**

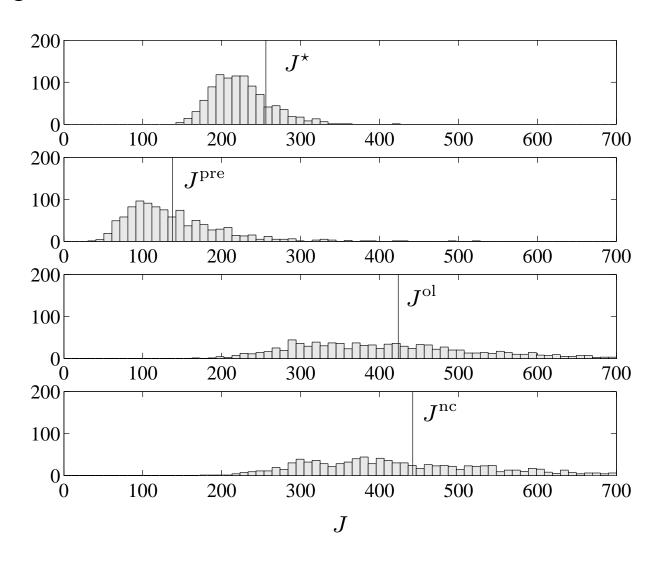
sample trace of  $(x_t)_1$  and  $(u_t)_1$ 



blue: optimal stochastic control, red: no control  $(u_0 = \cdots = u_{N-1} = 0)$ 

## **Cost histogram**

### cost histogram for $1000\ \mathrm{simulations}$



## **Comparisons**

we compared optimal stochastic control ( $J^* = 224.2$ ) with

- 'prescient' control
  - decide input sequence with full knowledge of future disturbances
  - $-u_0, \ldots, u_{N-1}$  computed assuming all  $w_t$  are known
  - $-J^{\text{pre}} = 137.6$
- 'open-loop' control
  - $-u_0,\ldots,u_{N-1}$  depend only on  $x_0$
  - $u_0, \ldots, u_{N-1}$  computed assuming  $w_0 = \cdots = w_{N-1} = 0$
  - $-J^{\text{ol}} = 423.7$
- no control
  - $-u_0 = \cdots = u_{N-1} = 0$
  - $-J^{\rm nc} = 442.0$