6. Approximation and fitting
Outline

Norm and penalty approximation

Regularized approximation

Robust approximation
Norm approximation

- minimize $\|Ax - b\|$, with $A \in \mathbb{R}^{m \times n}$, $m \geq n$, $\| \cdot \|$ is any norm

- **approximation**: Ax^* is the best approximation of b by a linear combination of columns of A

- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b (in norm $\| \cdot \|$)

- **estimation**: linear measurement model $y = Ax + v$
 - measurement y, v is measurement error, x is to be estimated
 - implausibility of v is $\|v\|$
 - given $y = b$, most plausible x is x^*

- **optimal design**: x are design variables (input), Ax is result (output)
 - x^* is design that best approximates desired result b (in norm $\| \cdot \|$)
Examples

- **Euclidean approximation** ($\| \cdot \|_2$)
 - solution $x^* = A^\dagger b$

- **Chebyshev or minimax approximation** ($\| \cdot \|_\infty$)
 - can be solved via LP

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \quad -t \mathbf{1} \leq Ax - b \leq t \mathbf{1}
\end{align*}
\]

- **sum of absolute residuals approximation** ($\| \cdot \|_1$)
 - can be solved via LP

\[
\begin{align*}
\text{minimize} & \quad \mathbf{1}^T y \\
\text{subject to} & \quad -y \leq Ax - b \leq y
\end{align*}
\]
Penalty function approximation

\[
\begin{align*}
\text{minimize} \quad & \phi(r_1) + \cdots + \phi(r_m) \\
\text{subject to} \quad & r = Ax - b
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \to \mathbb{R} \text{ is a convex penalty function})\)

examples

- quadratic: \(\phi(u) = u^2\)
- deadzone-linear with width \(a\):
 \[
 \phi(u) = \max\{0, |u| - a\}
 \]
- log-barrier with limit \(a\):
 \[
 \phi(u) = \begin{cases}
 -a^2 \log(1 - (u/a)^2) & \text{if } |u| < a \\
 \infty & \text{otherwise}
 \end{cases}
 \]

Convex Optimization

Boyd and Vandenberghe

6.4
Example: histograms of residuals

$A \in \mathbb{R}^{100 \times 30}$, shape of penalty function affects distribution of residuals

absolute value $\phi(u) = |u|$

square $\phi(u) = u^2$

deadzone $\phi(u) = \max\{0, |u| - 0.5\}$

log-barrier $\phi(u) = -\log(1 - u^2)$
Huber penalty function

\[
\phi_{\text{hub}}(u) = \begin{cases}
 u^2 & |u| \leq M \\
 M(2|u| - M) & |u| > M
\end{cases}
\]

- linear growth for large \(u \) makes approximation less sensitive to outliers
- called a \textbf{robust penalty}
Example

- 42 points (circles) t_i, y_i, with two outliers
- affine function $f(t) = \alpha + \beta t$ fit using quadratic (dashed) and Huber (solid) penalty
Least-norm problems

- least-norm problem:
 \[
 \text{minimize} \quad \|x\| \\
 \text{subject to} \quad Ax = b,
 \]

 with \(A \in \mathbb{R}^{m \times n}, m \leq n, \| \cdot \| \) is any norm

- **geometric:** \(x^\star \) is smallest point in solution set \(\{x \mid Ax = b\} \)

- **estimation:**
 - \(b = Ax \) are (perfect) measurements of \(x \)
 - \(\|x\| \) is implausibility of \(x \)
 - \(x^\star \) is most plausible estimate consistent with measurements

- **design:** \(x \) are design variables (inputs); \(b \) are required results (outputs)
 - \(x^\star \) is smallest (‘most efficient’) design that satisfies requirements
Examples

- least Euclidean norm ($\| \cdot \|_2$)
 - solution $x = A^\dagger b$ (assuming $b \in \mathcal{R}(A)$)

- least sum of absolute values ($\| \cdot \|_1$)
 - can be solved via LP

 minimize $1^T y$
 subject to $-y \leq x \leq y$, $Ax = b$

 - tends to yield sparse x^*
Outline

Norm and penalty approximation

Regularized approximation

Robust approximation
Regularized approximation

- a bi-objective problem:

 \[
 \text{minimize (w.r.t. } R^2_+) \quad (\|Ax - b\|, \|x\|)
 \]

- \(A \in \mathbb{R}^{m \times n} \), norms on \(\mathbb{R}^m \) and \(\mathbb{R}^n \) can be different
- interpretation: find good approximation \(Ax \approx b \) with small \(x \)

- estimation: linear measurement model \(y = Ax + v \), with prior knowledge that \(\|x\| \) is small
- optimal design: small \(x \) is cheaper or more efficient, or the linear model \(y = Ax \) is only valid for small \(x \)
- robust approximation: good approximation \(Ax \approx b \) with small \(x \) is less sensitive to errors in \(A \) than good approximation with large \(x \)
Scalarized problem

- minimize $\|Ax - b\| + \gamma \|x\|$
- solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $\|Ax - b\|^2 + \delta \|x\|^2$ with $\delta > 0$
- with $\| \cdot \|_2$, called Tikhonov regularization or ridge regression

$$\text{minimize} \quad \|Ax - b\|^2 + \delta \|x\|^2$$

- can be solved as a least-squares problem

$$\text{minimize} \quad \left\| \begin{bmatrix} A \\ \sqrt{\delta} I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2$$

with solution $x^* = (A^T A + \delta I)^{-1} A^T b$
Optimal input design

» **linear dynamical system** (or **convolution system**) with impulse response \(h \):

\[
y(t) = \sum_{\tau=0}^{t} h(\tau)u(t - \tau), \quad t = 0, 1, \ldots, N
\]

» **input design problem**: multicriterion problem with 3 objectives

 - tracking error with desired output \(y_{\text{des}} \): \(J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2 \)

 - input magnitude: \(J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2 \)

 - input variation: \(J_{\text{der}} = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2 \)

 track desired output using a small and slowly varying input signal

» **regularized least-squares formulation**: minimize \(J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}} \)

 - for fixed \(\delta, \eta \), a least-squares problem in \(u(0), \ldots, u(N) \)
Example

- minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$
- (top) $\delta = 0$, small η; (middle) $\delta = 0$, larger η; (bottom) large δ
Signal reconstruction

bi-objective problem:

\[
\text{minimize (w.r.t. } \mathbb{R}_+^2) \quad (\|\hat{x} - x_{\text{cor}}\|_2, \phi(\hat{x}))
\]

- \(x \in \mathbb{R}^n \) is unknown signal
- \(x_{\text{cor}} = x + v \) is (known) corrupted version of \(x \), with additive noise \(v \)
- variable \(\hat{x} \) (reconstructed signal) is estimate of \(x \)
- \(\phi : \mathbb{R}^n \to \mathbb{R} \) is regularization function or smoothing objective

examples:

- quadratic smoothing, \(\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2 \)
- total variation smoothing, \(\phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i| \)
Quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve

$\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
Reconstructing a signal with sharp transitions

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $||\hat{x} - x_{\text{cor}}||_2$ versus $\phi_{\text{quad}}(\hat{x})$

▶ quadratic smoothing smooths out noise and sharp transitions in signal
Total variation reconstruction

original signal x and noisy signal x_{cor}

three solutions on trade-off curve

$||\hat{x} - x_{\text{cor}}||_2$ versus $\phi_{tv}(\hat{x})$

▶ total variation smoothing preserves sharp transitions in signal
Outline

Norm and penalty approximation

Regularized approximation

Robust approximation
Robust approximation

- minimize $\|Ax - b\|$ with uncertain A

- two approaches:
 - **stochastic**: assume A is random, minimize $\mathbb{E} \|Ax - b\|$
 - **worst-case**: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

- tractable only in special cases (certain norms $\| \cdot \|$, distributions, sets \mathcal{A})
Example

\[A(u) = A_0 + uA_1, \; u \in [-1, 1] \]

- \(x_{\text{nom}} \) minimizes \(\|A_0x - b\|_2^2 \)
- \(x_{\text{stoch}} \) minimizes \(\mathbb{E}\|A(u)x - b\|_2^2 \)
 with \(u \) uniform on \([-1, 1]\)
- \(x_{\text{wc}} \) minimizes \(\sup_{-1 \leq u \leq 1} \|A(u)x - b\|_2^2 \)

plot shows \(r(u) = \|A(u)x - b\|_2 \) versus \(u \)
Stochastic robust least-squares

- $A = \bar{A} + U$, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$
- stochastic least-squares problem: minimize $\mathbf{E} \| (\bar{A} + U)x - b \|^2_2$
- explicit expression for objective:
 \[
 \mathbf{E} \| Ax - b \|^2_2 = \mathbf{E} \| \bar{A}x - b + Ux \|^2_2 \\
 = \| \bar{A}x - b \|^2_2 + \mathbf{E} x^T U^T Ux \\
 = \| \bar{A}x - b \|^2_2 + x^T Px
 \]
- hence, robust least-squares problem is equivalent to: minimize $\| \bar{A}x - b \|^2_2 + \| P^{1/2} x \|^2_2$
- for $P = \delta I$, get Tikhonov regularized problem: minimize $\| \bar{A}x - b \|^2_2 + \delta \| x \|^2_2$
Worst-case robust least-squares

\[\mathcal{A} = \{ \bar{A} + u_1A_1 + \cdots + u_pA_p \mid \|u\|_2 \leq 1 \} \] (an ellipsoid in \(\mathbb{R}^{m \times n} \))

- worst-case robust least-squares problem is

\[
\begin{align*}
\text{minimize} & \quad \sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 \\
\text{subject to} & \quad \|u\|_2 \leq 1
\end{align*}
\]

where \(P(x) = \begin{bmatrix} A_1x & A_2x & \cdots & A_px \end{bmatrix}, q(x) = \bar{A}x - b \)

- from book appendix B, strong duality holds between the following problems

\[
\begin{align*}
\text{maximize} & \quad \|Pu + q\|_2^2 \\
\text{subject to} & \quad \|u\|_2 \leq 1
\end{align*}
\]

\[
\begin{align*}
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}
\]

- hence, robust least-squares problem is equivalent to SDP

\[
\begin{align*}
\text{minimize} & \quad t + \lambda \\
\text{subject to} & \quad \begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \succeq 0
\end{align*}
\]
Example

- $r(u) = \| (A_0 + u_1 A_1 + u_2 A_2) x - b \|_2$, u uniform on unit disk
- three choices of x:
 - x_{ls} minimizes $\| A_0 x - b \|_2$
 - x_{tik} minimizes $\| A_0 x - b \|_2^2 + \delta \| x \|_2^2$ (Tikhonov solution)
 - x_{rls} minimizes $\sup_{A \in \mathcal{A}} \| A x - b \|_2^2 + \| x \|_2^2$