Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

11. Interior-point methods

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

we assume

- $ightharpoonup f_i$ convex, twice continuously differentiable
- $ightharpoonup A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- $ightharpoonup p^*$ is finite and attained
- **Problem** is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \mathbf{dom} f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \quad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$, $Ax = b$

with
$$\mathbf{dom} f_0 = \mathbf{R}_{++}^n$$

- ▶ differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- ▶ SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Logarithmic barrier

reformulation via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where
$$I_{-}(u) = 0$$
 if $u \le 0$, $I_{-}(u) = \infty$ otherwise

approximation via logarithmic barrier:

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- ▶ for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_{-}
- ▶ approximation improves as $t \to \infty$

 $-(1/t) \log u$ for three values of t, and $I_{-}(u)$

Logarithmic barrier function

▶ log barrier function for constraints $f_1(x) \le 0, \dots, f_m(x) \le 0$

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^*(t)$ as the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

• central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., 6$

hyperplane $c^Tx = c^Tx^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$

Dual points on central path

 $ightharpoonup x = x^*(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

▶ therefore, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^{*}(t), \nu^{*}(t)) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x) + \nu^{*}(t)^{T} (Ax - b)$$

where we define $\lambda_i^{\star}(t) = 1/(-tf_i(x^{\star}(t)))$ and $v^{\star}(t) = w/t$

▶ this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \ge g(\lambda^{\star}(t), \nu^{\star}(t)) = L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)) = f_0(x^{\star}(t)) - m/t$$

Interpretation via KKT conditions

$$x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t)$$
 satisfy

- 1. primal constraints: $f_i(x) \le 0$, i = 1, ..., m, Ax = b
- 2. dual constraints: $\lambda \geq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to *x* vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T v = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

minimize
$$tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$$

- force field interpretation
 - $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
 - $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$
- forces balance at $x^*(t)$:

$$F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0$$

Example: LP

- ▶ minimize $c^T x$ subject to $a_i^T x \le b_i$, i = 1, ..., m, with $x \in \mathbf{R}^n$
- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad ||F_i(x)||_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^*(t)$.
- 3. Stopping criterion. **quit** if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- ▶ terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- lacktriangle centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10$ or 20
- ightharpoonup several heuristics for choice of $t^{(0)}$

Example: Inequality form LP

(m = 100 inequalities, n = 50 variables)

- starts with x on central path $(t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- ▶ total number of Newton iterations not very sensitive for $\mu \ge 10$

Example: Geometric program in convex form

(m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k})\right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik})\right) \le 0, \quad i = 1, \dots, m$

Convex Optimization Boyd and Vandenberghe 11.16

Family of standard LPs

$$(A \in \mathbf{R}^{m \times 2m})$$

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

 $m = 10, \dots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Phase I methods

barrier method needs strictly feasible starting point, *i.e.*, *x* with

$$f_i(x) < 0, \quad i = 1, \dots, m, \qquad Ax = b$$

- (like the infeasible start Newton method, more sophisticated interior-point methods do not require a feasible starting point)
- phase I method forms an optimization problem that
 - is itself strictly feasible
 - finds a strictly feasible point for original problem, if one exists
 - certifies original problem as infeasible otherwise
- phase II uses barrier method starting from strictly feasible point found in phase I

Basic phase I method

introduce slack variable s in phase I problem

minimize (over
$$x$$
, s) s
subject to $f_i(x) \le s$, $i = 1, \ldots, m$
 $Ax = b$

with optimal value \bar{p}^*

- if \bar{p}^{\star} < 0, original inequalities are strictly feasible
- if $\bar{p}^{\star} > 0$, original inequalities are infeasible
- $-\bar{p}^{\star}=0$ is an ambiguous case
- start phase I problem with
 - any \tilde{x} in problem domain with $A\tilde{x} = b$
 - $s = 1 + \max_{i} f_i(\tilde{x})$

Sum of infeasibilities phase I method

minimize sum of slacks, not max:

minimize
$$\mathbf{1}^T s$$

subject to $s \ge 0$, $f_i(x) \le s_i$, $i = 1, ..., m$
 $Ax = b$

- will find a strictly feasible point if one exists
- for infeasible problems, produces a solution that satisfies many (but not all) inequalities
- can weight slacks to set priorities (in satisfying constraints)

Example

- infeasible set of 100 linear inequalities in 50 variables
- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Example: Family of linear inequalities

- $Ax \le b + \gamma \Delta b$; strictly feasible for $\gamma > 0$, infeasible for $\gamma < 0$
- ightharpoonup use basic phase I, terminate when s < 0 or dual objective is positive
- number of iterations roughly proportional to $log(1/|\gamma|)$

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Number of outer iterations

- ightharpoonup in each iteration duality gap is reduced by exactly the factor μ
- number of outer (centering) iterations is exactly

$$\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

plus the initial centering step (to compute $x^*(t^{(0)})$)

we will bound number of Newton steps per centering iteration using self-concordance analysis

Complexity analysis via self-concordance

same assumptions as on slide 11.2, plus:

- ightharpoonup sublevel sets (of f_0 , on the feasible set) are bounded
- $ightharpoonup tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

minimize
$$\sum_{i=1}^{n} x_i \log x_i \longrightarrow \mininimize \sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$ subject to $Fx \leq g$, $x \geq 0$

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step

- we compute $x^+ = x^*(\mu t)$, by minimizing $\mu t f_0(x) + \phi(x)$ starting from $x = x^*(t)$
- from self-concordance theory,

#Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

- $ightharpoonup \gamma$, c are constants (that depend only on Newton algorithm parameters)
- we will bound numerator $\mu t f_0(x) + \phi(x) \mu t f_0(x^+) \phi(x^+)$
- with $\lambda_i = \lambda_i^*(t) = -1/(tf_i(x))$, we have $-f_i(x) = 1/(t\lambda_i)$, so

$$\phi(x) = \sum_{i=1}^{m} -\log(-f_i(x)) = \sum_{i=1}^{m} \log(t\lambda_i)$$

SO

$$\phi(x) - \phi(x^{+}) = \sum_{i=1}^{m} \left(\log(t\lambda_{i}) + \log(-f_{i}(x^{+})) \right) = \sum_{i=1}^{m} \log(-\mu t\lambda_{i}f_{i}(x^{+})) - m\log\mu$$

using
$$\log u \le u - 1$$
 we have $\phi(x) - \phi(x^+) \le -\mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$, so
$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$\le \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$$

$$= \mu t f_0(x) - \mu t \left(f_0(x^+) + \sum_{i=1}^m \lambda_i f_i(x^+) + v^T (Ax^+ - b) \right) - m - m \log \mu$$

$$= \mu t f_0(x) - \mu t L(x^+, \lambda, v) - m - m \log \mu$$

$$\le \mu t f_0(x) - \mu t g(\lambda, v) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

using $L(x^+, \lambda, nu) \ge g(\lambda, \nu)$ in second last line and $f_0(x) - g(\lambda, \nu) = m/t$ in last line

Total number of Newton iterations

$$\# \text{Newton iterations} \leq N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

N versus μ for typical values of γ , c; m=100, initial duality gap $\frac{m}{t^{(0)}\epsilon}=10^5$

- ightharpoonup confirms trade-off in choice of μ
- ▶ in practice, #iterations is in the tens; not very sensitive for $\mu \ge 10$

Polynomial-time complexity of barrier method

• for $\mu = 1 + 1/\sqrt{m}$:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- ▶ number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
- lacktriangle this choice of μ optimizes worst-case complexity; in practice we choose μ fixed and larger

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

- ▶ f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$
- we assume
 - $-f_i$ twice continuously differentiable
 - $-A \in \mathbf{R}^{p \times n}$ with $\mathbf{rank} A = p$
 - $-p^*$ is finite and attained
 - problem is strictly feasible; hence strong duality holds and dual optimum is attained
- examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is **generalized logarithm** for proper cone $K \subseteq \mathbf{R}^q$ if:

- ▶ **dom** ψ = **int** K and $\nabla^2 \psi(y) < 0$ for $y >_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y >_K 0$, s > 0 (θ is the degree of ψ)

examples

- ▶ nonnegative orthant $K = \mathbf{R}_+^n$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- ▶ positive semidefinite cone $K = \mathbf{S}_{+}^{n}$: $\psi(Y) = \log \det Y$, with degree $\theta = n$
- second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2)$$
 with degree $(\theta = 2)$

Properties

• (without proof): for $y >_K 0$,

$$\nabla \psi(y) \geq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta$$

▶ nonnegative orthant \mathbf{R}_{+}^{n} : $\psi(y) = \sum_{i=1}^{n} \log y_{i}$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

▶ positive semidefinite cone S_+^n : $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \quad \mathbf{tr}(Y \nabla \psi(Y)) = n$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \leq_{K_1} 0, \ldots, f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- \blacktriangleright ϕ is convex, twice continuously differentiable

central path: $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ is solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

Dual points on central path

 $x = x^*(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

▶ therefore, $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}$$

• from properties of ψ_i : $\lambda_i^{\star}(t) \succ_{K_i^*} 0$, with duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i$$

Example: Semidefinite programming

(with $F_i \in \mathbf{S}^p$)

minimize
$$c^T x$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \le 0$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- ► central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$; hence

$$tc_i - \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n$$

▶ dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$
 $Z > 0$

▶ duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^*(t)$.
- 3. Stopping criterion. **quit** if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- ▶ only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

complexity analysis via self-concordance applies to SDP, SOCP

Example: SOCP

(50 variables, 50 SOC constraints in \mathbb{R}^6)

Example: SDP

(100 variables, LMI constraint in S^{100})

Example: Family of SDPs

$$(A \in \mathbf{S}^n, x \in \mathbf{R}^n)$$

minimize
$$\mathbf{1}^T x$$

subject to $A + \mathbf{diag}(x) \ge 0$

 $n = 10, \dots, 1000$; for each n solve 100 randomly generated instances

Convex Optimization Boyd and Vandenberghe 11.41

Primal-dual interior-point methods

- more efficient than barrier method when high accuracy is needed
- update primal and dual variables, and κ , at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method