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Inequality constrained minimization

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

we assume
▶ fi convex, twice continuously differentiable
▶ A ∈ Rp×n with rank A = p
▶ p★ is finite and attained
▶ problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi (x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

▶ LP, QP, QCQP, GP

▶ entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx ⪯ g, Ax = b

with dom f0 = Rn
++

▶ differentiability may require reformulating the problem, e.g., piecewise-linear minimization
or ℓ∞-norm approximation via LP

▶ SDPs and SOCPs are better handled as problems with generalized inequalities (see later)
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Logarithmic barrier

▶ reformulation via indicator function:

minimize f0 (x) +
∑m

i=1 I− (fi (x))
subject to Ax = b

where I− (u) = 0 if u ≤ 0, I− (u) = ∞ otherwise
▶ approximation via logarithmic barrier:

minimize f0 (x) − (1/t)∑m
i=1 log(−fi (x))

subject to Ax = b

▶ an equality constrained problem
▶ for t > 0, −(1/t) log(−u) is a smooth approximation of I−
▶ approximation improves as t → ∞
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▶ −(1/t) log u for three values of t, and I− (u)
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Logarithmic barrier function

▶ log barrier function for constraints f1 (x) ≤ 0, . . . , fm (x) ≤ 0

𝜙(x) = −
m∑︁

i=1
log(−fi (x)), dom 𝜙 = {x | f1 (x) < 0, . . . , fm (x) < 0}

▶ convex (from composition rules)
▶ twice continuously differentiable, with derivatives

∇𝜙(x) =

m∑︁
i=1

1
−fi (x)

∇fi (x)

∇2𝜙(x) =

m∑︁
i=1

1
fi (x)2 ∇fi (x)∇fi (x)T +

m∑︁
i=1

1
−fi (x)

∇2fi (x)
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Central path
▶ for t > 0, define x★(t) as the solution of

minimize tf0 (x) + 𝜙(x)
subject to Ax = b

(for now, assume x★(t) exists and is unique for each t > 0)
▶ central path is {x★(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx★(t) is tangent to level curve of
𝜙 through x★(t)

c

x
★

x
★(10)
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Dual points on central path

▶ x = x★(t) if there exists a w such that

t∇f0 (x) +
m∑︁

i=1

1
−fi (x)

∇fi (x) + ATw = 0, Ax = b

▶ therefore, x★(t) minimizes the Lagrangian

L(x, 𝜆★(t), 𝜈★(t)) = f0 (x) +
m∑︁

i=1
𝜆★i (t)fi (x) + 𝜈★(t)T (Ax − b)

where we define 𝜆★i (t) = 1/(−tfi (x★(t)) and 𝜈★(t) = w/t
▶ this confirms the intuitive idea that f0 (x★(t)) → p★ if t → ∞:

p★ ≥ g(𝜆★(t), 𝜈★(t)) = L(x★(t), 𝜆★(t), 𝜈★(t)) = f0 (x★(t)) − m/t
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Interpretation via KKT conditions

x = x★(t), 𝜆 = 𝜆★(t), 𝜈 = 𝜈★(t) satisfy
1. primal constraints: fi (x) ≤ 0, i = 1, . . . ,m, Ax = b
2. dual constraints: 𝜆 ⪰ 0
3. approximate complementary slackness: −𝜆ifi (x) = 1/t, i = 1, . . . ,m
4. gradient of Lagrangian with respect to x vanishes:

∇f0 (x) +
m∑︁

i=1
𝜆i∇fi (x) + AT𝜈 = 0

difference with KKT is that condition 3 replaces 𝜆ifi (x) = 0
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Force field interpretation

▶ centering problem (for problem with no equality constraints)

minimize tf0 (x) −
∑m

i=1 log(−fi (x))

▶ force field interpretation
– tf0 (x) is potential of force field F0 (x) = −t∇f0 (x)

– − log(−fi (x)) is potential of force field Fi (x) = (1/fi (x))∇fi (x)
▶ forces balance at x★(t):

F0 (x★(t)) +
m∑︁

i=1
Fi (x★(t)) = 0

Convex Optimization Boyd and Vandenberghe 11.11



Example: LP
▶ minimize cTx subject to aT

i x ≤ bi, i = 1, . . . ,m, with x ∈ Rn

▶ objective force field is constant: F0 (x) = −tc
▶ constraint force field decays as inverse distance to constraint hyperplane:

Fi (x) =
−ai

bi − aT
i x

, ∥Fi (x)∥2 =
1

dist(x,Hi)

where Hi = {x | aT
i x = bi}

−c

−3c

t = 1 t = 3
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Barrier method

given strictly feasible x, t := t (0) > 0, 𝜇 > 1, tolerance 𝜖 > 0.
repeat

1. Centering step. Compute x★(t) by minimizing tf0 + 𝜙, subject to Ax = b.
2. Update. x := x★(t).
3. Stopping criterion. quit if m/t < 𝜖 .
4. Increase t. t := 𝜇t.

▶ terminates with f0 (x) − p★ ≤ 𝜖 (stopping criterion follows from f0 (x★(t)) − p★ ≤ m/t)
▶ centering usually done using Newton’s method, starting at current x
▶ choice of 𝜇 involves a trade-off: large 𝜇 means fewer outer iterations, more inner (Newton)

iterations; typical values: 𝜇 = 10 or 20
▶ several heuristics for choice of t (0)
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Example: Inequality form LP

(m = 100 inequalities, n = 50 variables)

Newton iterations
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▶ starts with x on central path (t (0) = 1, duality gap 100)
▶ terminates when t = 108 (gap 10−6)
▶ total number of Newton iterations not very sensitive for 𝜇 ≥ 10
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Example: Geometric program in convex form
(m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT
0kx + b0k)

)
subject to log

(∑5
k=1 exp(aT

ikx + bik)
)
≤ 0, i = 1, . . . ,m

Newton iterations
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Family of standard LPs
(A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x ⪰ 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m

N
e
w

to
n

it
e
ra

ti
o
n
s

10
1

10
2

10
3

15

20

25

30

35

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Phase I methods

▶ barrier method needs strictly feasible starting point, i.e., x with

fi (x) < 0, i = 1, . . . ,m, Ax = b

▶ (like the infeasible start Newton method, more sophisticated interior-point methods do not
require a feasible starting point)

▶ phase I method forms an optimization problem that
– is itself strictly feasible
– finds a strictly feasible point for original problem, if one exists
– certifies original problem as infeasible otherwise

▶ phase II uses barrier method starting from strictly feasible point found in phase I
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Basic phase I method

▶ introduce slack variable s in phase I problem

minimize (over x, s) s
subject to fi (x) ≤ s, i = 1, . . . ,m

Ax = b

with optimal value p̄★

– if p̄★ < 0, original inequalities are strictly feasible
– if p̄★ > 0, original inequalities are infeasible
– p̄★ = 0 is an ambiguous case

▶ start phase I problem with
– any x̃ in problem domain with Ax̃ = b
– s = 1 + maxi fi (x̃)
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Sum of infeasibilities phase I method

▶ minimize sum of slacks, not max:

minimize 1Ts
subject to s ⪰ 0, fi (x) ≤ si, i = 1, . . . ,m

Ax = b

▶ will find a strictly feasible point if one exists

▶ for infeasible problems, produces a solution that satisfies many (but not all) inequalities

▶ can weight slacks to set priorities (in satifying constraints)
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Example

▶ infeasible set of 100 linear inequalities in 50 variables
▶ left: basic phase I solution; satisfies 39 inequalities
▶ right: sum of infeasibilities phase I solution; satisfies 79 inequalities
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Example: Family of linear inequalities

▶ Ax ⪯ b + 𝛾Δb; strictly feasible for 𝛾 > 0, infeasible for 𝛾 < 0
▶ use basic phase I, terminate when s < 0 or dual objective is positive
▶ number of iterations roughly proportional to log(1/|𝛾 |)
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Number of outer iterations

▶ in each iteration duality gap is reduced by exactly the factor 𝜇

▶ number of outer (centering) iterations is exactly⌈
log(m/(𝜖 t (0) ))

log 𝜇

⌉
plus the initial centering step (to compute x★(t (0) ))

▶ we will bound number of Newton steps per centering iteration using self-concordance
analysis
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Complexity analysis via self-concordance

same assumptions as on slide 11.2, plus:
▶ sublevel sets (of f0, on the feasible set) are bounded
▶ tf0 + 𝜙 is self-concordant with closed sublevel sets

second condition
▶ holds for LP, QP, QCQP
▶ may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx ⪯ g

−→ minimize
∑n

i=1 xi log xi
subject to Fx ⪯ g, x ⪰ 0

▶ needed for complexity analysis; barrier method works even when self-concordance
assumption does not apply
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Newton iterations per centering step
▶ we compute x+ = x★(𝜇t), by minimizing 𝜇tf0 (x) + 𝜙(x) starting from x = x★(t)

▶ from self-concordance theory,

#Newton iterations ≤ 𝜇tf0 (x) + 𝜙(x) − 𝜇tf0 (x+) − 𝜙(x+)
𝛾

+ c

▶ 𝛾, c are constants (that depend only on Newton algorithm parameters)

▶ we will bound numerator 𝜇tf0 (x) + 𝜙(x) − 𝜇tf0 (x+) − 𝜙(x+)

▶ with 𝜆i = 𝜆★i (t) = −1/(tfi (x)), we have −fi (x) = 1/(t𝜆i), so

𝜙(x) =
m∑︁

i=1
− log(−fi (x)) =

m∑︁
i=1

log(t𝜆i)

so

𝜙(x) − 𝜙(x+) =
m∑︁

i=1

(
log(t𝜆i) + log(−fi (x+))

)
=

m∑︁
i=1

log(−𝜇t𝜆ifi (x+)) − m log 𝜇
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using log u ≤ u − 1 we have 𝜙(x) − 𝜙(x+) ≤ −𝜇t
∑m

i=1 𝜆ifi (x+) − m − m log 𝜇, so

𝜇tf0 (x) + 𝜙(x) − 𝜇tf0 (x+) − 𝜙(x+)

≤ 𝜇tf0 (x) − 𝜇tf0 (x+) − 𝜇t
m∑︁

i=1
𝜆ifi (x+) − m − m log 𝜇

= 𝜇tf0 (x) − 𝜇t

(
f0 (x+) +

m∑︁
i=1

𝜆ifi (x+) + 𝜈T (Ax+ − b)
)
− m − m log 𝜇

= 𝜇tf0 (x) − 𝜇tL(x+, 𝜆, 𝜈) − m − m log 𝜇

≤ 𝜇tf0 (x) − 𝜇tg(𝜆, 𝜈) − m − m log 𝜇

= m(𝜇 − 1 − log 𝜇)

using L(x+, 𝜆, nu) ≥ g(𝜆, 𝜈) in second last line and f0 (x) − g(𝜆, 𝜈) = m/t in last line
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Total number of Newton iterations

#Newton iterations ≤ N =

⌈
log(m/(t (0)𝜖))

log 𝜇

⌉ (
m(𝜇 − 1 − log 𝜇)

𝛾
+ c

)

`

N

1 1.1 1.2
0

1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

N versus 𝜇 for typical values of 𝛾, c;
m = 100, initial duality gap m

t (0) 𝜖 = 105

▶ confirms trade-off in choice of 𝜇
▶ in practice, #iterations is in the tens; not very sensitive for 𝜇 ≥ 10
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Polynomial-time complexity of barrier method

▶ for 𝜇 = 1 + 1/
√

m:

N = O
(√

m log
(
m/t (0)

𝜖

))
▶ number of Newton iterations for fixed gap reduction is O(

√
m)

▶ multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to
get bound on number of flops

▶ this choice of 𝜇 optimizes worst-case complexity; in practice we choose 𝜇 fixed and larger
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Generalized inequalities

minimize f0 (x)
subject to fi (x) ⪯Ki 0, i = 1, . . . ,m

Ax = b

▶ f0 convex, fi : Rn → Rki , i = 1, . . . ,m, convex with respect to proper cones Ki ∈ Rki

▶ we assume
– fi twice continuously differentiable
– A ∈ Rp×n with rank A = p
– p★ is finite and attained
– problem is strictly feasible; hence strong duality holds and dual optimum is attained

▶ examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

𝜓 : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:
▶ dom𝜓 = int K and ∇2𝜓(y) ≺ 0 for y ≻K 0
▶ 𝜓(sy) = 𝜓(y) + 𝜃 log s for y ≻K 0, s > 0 (𝜃 is the degree of 𝜓)

examples
▶ nonnegative orthant K = Rn

+: 𝜓(y) = ∑n
i=1 log yi, with degree 𝜃 = n

▶ positive semidefinite cone K = Sn
+: 𝜓(Y) = log det Y, with degree 𝜃 = n

▶ second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

𝜓(y) = log(y2
n+1 − y2

1 − · · · − y2
n) with degree (𝜃 = 2)
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Properties
▶ (without proof): for y ≻K 0,

∇𝜓(y) ⪰K∗ 0, yT∇𝜓(y) = 𝜃

▶ nonnegative orthant Rn
+: 𝜓(y) = ∑n

i=1 log yi

∇𝜓(y) = (1/y1, . . . , 1/yn), yT∇𝜓(y) = n

▶ positive semidefinite cone Sn
+: 𝜓(Y) = log det Y

∇𝜓(Y) = Y−1, tr(Y∇𝜓(Y)) = n

▶ second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

∇𝜓(y) = 2
y2

n+1 − y2
1 − · · · − y2

n


−y1
...

−yn
yn+1


, yT∇𝜓(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1 (x) ⪯K1 0, . . . , fm (x) ⪯Km 0:

𝜙(x) = −
m∑︁

i=1
𝜓i (−fi (x)), dom 𝜙 = {x | fi (x) ≺Ki 0, i = 1, . . . ,m}

▶ 𝜓i is generalized logarithm for Ki, with degree 𝜃i

▶ 𝜙 is convex, twice continuously differentiable

central path: {x★(t) | t > 0} where x★(t) is solution of

minimize tf0 (x) + 𝜙(x)
subject to Ax = b
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Dual points on central path
x = x★(t) if there exists w ∈ Rp,

t∇f0 (x) +
m∑︁

i=1
Dfi (x)T∇𝜓i (−fi (x)) + ATw = 0

(Dfi (x) ∈ Rki×n is derivative matrix of fi)
▶ therefore, x★(t) minimizes Lagrangian L(x, 𝜆★(t), 𝜈★(t)), where

𝜆★i (t) =
1
t
∇𝜓i (−fi (x★(t))), 𝜈★(t) = w

t

▶ from properties of 𝜓i: 𝜆★i (t) ≻K∗
i

0, with duality gap

f0 (x★(t)) − g(𝜆★(t), 𝜈★(t)) = (1/t)
m∑︁

i=1
𝜃i
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Example: Semidefinite programming
(with Fi ∈ Sp)

minimize cTx
subject to F(x) = ∑n

i=1 xiFi + G ⪯ 0

▶ logarithmic barrier: 𝜙(x) = log det(−F(x)−1)
▶ central path: x★(t) minimizes tcTx − log det(−F(x)); hence

tci − tr(FiF(x★(t))−1) = 0, i = 1, . . . , n

▶ dual point on central path: Z★(t) = −(1/t)F(x★(t))−1 is feasible for

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z ⪰ 0

▶ duality gap on central path: cTx★(t) − tr(GZ★(t)) = p/t
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Barrier method

given strictly feasible x, t := t (0) > 0, 𝜇 > 1, tolerance 𝜖 > 0.
repeat

1. Centering step. Compute x★(t) by minimizing tf0 + 𝜙, subject to Ax = b.
2. Update. x := x★(t).
3. Stopping criterion. quit if (∑i 𝜃i)/t < 𝜖 .
4. Increase t. t := 𝜇t.

▶ only difference is duality gap m/t on central path is replaced by
∑

i 𝜃i/t
▶ number of outer iterations: ⌈

log((∑i 𝜃i)/(𝜖 t (0) ))
log 𝜇

⌉
▶ complexity analysis via self-concordance applies to SDP, SOCP
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Example: SOCP

(50 variables, 50 SOC constraints in R6)

Newton iterations
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Example: SDP

(100 variables, LMI constraint in S100)

Newton iterations
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Example: Family of SDPs
(A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A + diag(x) ⪰ 0

n = 10, . . . , 1000; for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

▶ more efficient than barrier method when high accuracy is needed

▶ update primal and dual variables, and 𝜅, at each iteration; no distinction between inner and
outer iterations

▶ often exhibit superlinear asymptotic convergence

▶ search directions can be interpreted as Newton directions for modified KKT conditions

▶ can start at infeasible points

▶ cost per iteration same as barrier method
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