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Lagrangian

▶ standard form problem (not necessarily convex)

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

variable x ∈ Rn, domain D, optimal value p★

▶ Lagrangian: L : Rn × Rm × Rp → R, with dom L = D × Rm × Rp,

L(x, 𝜆, 𝜈) = f0 (x) +
m∑︁

i=1
𝜆ifi (x) +

p∑︁
i=1

𝜈ihi (x)

– weighted sum of objective and constraint functions
– 𝜆i is Lagrange multiplier associated with fi (x) ≤ 0
– 𝜈i is Lagrange multiplier associated with hi (x) = 0
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Lagrange dual function

▶ Lagrange dual function: g : Rm × Rp → R,

g(𝜆, 𝜈) = inf
x∈D

L(x, 𝜆, 𝜈) = inf
x∈D

(
f0 (x) +

m∑︁
i=1

𝜆ifi (x) +
p∑︁

i=1
𝜈ihi (x)

)
▶ g is concave, can be −∞ for some 𝜆, 𝜈
▶ lower bound property: if 𝜆 ⪰ 0, then g(𝜆, 𝜈) ≤ p★

▶ proof: if x̃ is feasible and 𝜆 ⪰ 0, then

f0 (x̃) ≥ L(x̃, 𝜆, 𝜈) ≥ inf
x∈D

L(x, 𝜆, 𝜈) = g(𝜆, 𝜈)

minimizing over all feasible x̃ gives p★ ≥ g(𝜆, 𝜈)
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Least-norm solution of linear equations

minimize xTx
subject to Ax = b

▶ Lagrangian is L(x, 𝜈) = xTx + 𝜈T (Ax − b)
▶ to minimize L over x, set gradient equal to zero:

∇xL(x, 𝜈) = 2x + AT𝜈 = 0 =⇒ x = −(1/2)AT𝜈

▶ plug x into L to obtain

g(𝜈) = L((−1/2)AT𝜈, 𝜈) = −1
4
𝜈TAAT𝜈 − bT𝜈

▶ lower bound property: p★ ≥ −(1/4)𝜈TAAT𝜈 − bT𝜈 for all 𝜈
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Standard form LP

minimize cTx
subject to Ax = b, x ⪰ 0

▶ Lagrangian is

L(x, 𝜆, 𝜈) = cTx + 𝜈T (Ax − b) − 𝜆Tx = −bT𝜈 + (c + AT𝜈 − 𝜆)Tx

▶ L is affine in x, so

g(𝜆, 𝜈) = inf
x

L(x, 𝜆, 𝜈) =
{
−bT𝜈 AT𝜈 − 𝜆 + c = 0
−∞ otherwise

▶ g is linear on affine domain {(𝜆, 𝜈) | AT𝜈 − 𝜆 + c = 0}, hence concave
▶ lower bound property: p★ ≥ −bT𝜈 if AT𝜈 + c ⪰ 0
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Equality constrained norm minimization

minimize ∥x∥
subject to Ax = b

▶ dual function is

g(𝜈) = inf
x
(∥x∥ − 𝜈TAx + bT𝜈) =

{
bT𝜈 ∥AT𝜈∥∗ ≤ 1
−∞ otherwise

where ∥v∥∗ = sup∥u∥≤1 uTv is dual norm of ∥ · ∥
▶ lower bound property: p★ ≥ bT𝜈 if ∥AT𝜈∥∗ ≤ 1
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Two-way partitioning

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n

▶ a nonconvex problem; feasible set contains 2n discrete points
▶ interpretation: partition {1, . . . , n} in two sets encoded as xi = 1 and xi = −1
▶ Wij is cost of assigning i, j to the same set; −Wij is cost of assigning to different sets
▶ dual function is

g(𝜈) = inf
x

(
xTWx +

∑︁
i
𝜈i (x2

i − 1)
)
= inf

x
xT (W + diag(𝜈)) x−1T𝜈 =

{
−1T𝜈 W + diag(𝜈) ⪰ 0
−∞ otherwise

▶ lower bound property: p★ ≥ −1T𝜈 if W + diag(𝜈) ⪰ 0
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Lagrange dual and conjugate function

minimize f0 (x)
subject to Ax ⪯ b, Cx = d

▶ dual function

g(𝜆, 𝜈) = inf
x∈dom f0

(
f0 (x) + (AT𝜆 + CT𝜈)Tx − bT𝜆 − dT𝜈

)
= −f ∗0 (−AT𝜆 − CT𝜈) − bT𝜆 − dT𝜈

where f ∗ (y) = supx∈dom f (yTx − f (x)) is conjugate of f0
▶ simplifies derivation of dual if conjugate of f0 is known
▶ example: entropy maximization

f0 (x) =
n∑︁

i=1
xi log xi, f ∗0 (y) =

n∑︁
i=1

eyi−1
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The Lagrange dual problem

(Lagrange) dual problem
maximize g(𝜆, 𝜈)
subject to 𝜆 ⪰ 0

▶ finds best lower bound on p★, obtained from Lagrange dual function
▶ a convex optimization problem, even if original primal problem is not
▶ dual optimal value denoted d★

▶ 𝜆, 𝜈 are dual feasible if 𝜆 ⪰ 0, (𝜆, 𝜈) ∈ dom g
▶ often simplified by making implicit constraint (𝜆, 𝜈) ∈ dom g explicit
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Example: standard form LP

(see page 5.5)
▶ primal standard form LP:

minimize cTx
subject to Ax = b

x ⪰ 0
▶ dual problem is

maximize g(𝜆, 𝜈)
subject to 𝜆 ⪰ 0

with g(𝜆, 𝜈) = −bT𝜈 if AT𝜈 − 𝜆 + c = 0, −∞ otherwise
▶ make implicit constraint explicit, and eliminate 𝜆 to obtain (transformed) dual problem

maximize −bT𝜈

subject to AT𝜈 + c ⪰ 0
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Weak and strong duality

weak duality: d★ ≤ p★

▶ always holds (for convex and nonconvex problems)
▶ can be used to find nontrivial lower bounds for difficult problems, e.g., solving the SDP

maximize −1T𝜈
subject to W + diag(𝜈) ⪰ 0

gives a lower bound for the two-way partitioning problem on page 5.7

strong duality: d★ = p★

▶ does not hold in general
▶ (usually) holds for convex problems
▶ conditions that guarantee strong duality in convex problems are called constraint

qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e., there is an x ∈ intD with fi (x) < 0, i = 1, . . . ,m, Ax = b

▶ also guarantees that the dual optimum is attained (if p★ > −∞)
▶ can be sharpened: e.g.,

– can replace intD with relintD (interior relative to affine hull)
– linear inequalities do not need to hold with strict inequality

▶ there are many other types of constraint qualifications
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Inequality form LP

primal problem
minimize cTx
subject to Ax ⪯ b

dual function
g(𝜆) = inf

x

(
(c + AT𝜆)Tx − bT𝜆

)
=

{
−bT𝜆 AT𝜆 + c = 0
−∞ otherwise

dual problem
maximize −bT𝜆

subject to AT𝜆 + c = 0, 𝜆 ⪰ 0

▶ from the sharpened Slater’s condition: p★ = d★ if the primal problem is feasible
▶ in fact, p★ = d★ except when primal and dual are both infeasible
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Quadratic program

primal problem (assume P ∈ Sn
++)

minimize xTPx
subject to Ax ⪯ b

dual function
g(𝜆) = inf

x

(
xTPx + 𝜆T (Ax − b)

)
= −1

4
𝜆TAP−1AT𝜆 − bT𝜆

dual problem
maximize −(1/4)𝜆TAP−1AT𝜆 − bT𝜆
subject to 𝜆 ⪰ 0

▶ from the sharpened Slater’s condition: p★ = d★ if the primal problem is feasible
▶ in fact, p★ = d★ always
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Geometric interpretation

▶ for simplicity, consider problem with one constraint f1 (x) ≤ 0
▶ G = {(f1 (x), f0 (x)) | x ∈ D} is set of achievable (constraint, objective) values
▶ interpretation of dual function: g(𝜆) = inf (u,t) ∈G (t + 𝜆u)

G

p★

g(_)_u + t = g(_)

t

u

G

p★

d★

t

u

▶ 𝜆u + t = g(𝜆) is (non-vertical) supporting hyperplane to G
▶ hyperplane intersects t-axis at t = g(𝜆)
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Epigraph variation

▶ same with G replaced with A = {(u, t) | f1 (x) ≤ u, f0 (x) ≤ t for some x ∈ D}

A

p★

g(_)

_u + t = g(_)

t

u

▶ strong duality holds if there is a non-vertical supporting hyperplane to A at (0, p★)
▶ for convex problem, A is convex, hence has supporting hyperplane at (0, p★)
▶ Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting hyperplane at (0, p★)

must be non-vertical
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Complementary slackness

▶ assume strong duality holds, x★ is primal optimal, (𝜆★, 𝜈★) is dual optimal

f0 (x★) = g(𝜆★, 𝜈★) = inf
x

(
f0 (x) +

m∑︁
i=1

𝜆★i fi (x) +
p∑︁

i=1
𝜈★i hi (x)

)
≤ f0 (x★) +

m∑︁
i=1

𝜆★i fi (x★) +
p∑︁

i=1
𝜈★i hi (x★)

≤ f0 (x★)

▶ hence, the two inequalities hold with equality
▶ x★ minimizes L(x, 𝜆★, 𝜈★)
▶ 𝜆★i fi (x★) = 0 for i = 1, . . . ,m (known as complementary slackness):

𝜆★i > 0 =⇒ fi (x★) = 0, fi (x★) < 0 =⇒ 𝜆★i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the KKT conditions (for a problem with differentiable fi, hi) are
1. primal constraints: fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p
2. dual constraints: 𝜆 ⪰ 0
3. complementary slackness: 𝜆ifi (x) = 0, i = 1, . . . ,m
4. gradient of Lagrangian with respect to x vanishes:

∇f0 (x) +
m∑︁

i=1
𝜆i∇fi (x) +

p∑︁
i=1

𝜈i∇hi (x) = 0

if strong duality holds and x, 𝜆, 𝜈 are optimal, they satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, 𝜆̃, 𝜈̃ satisfy KKT for a convex problem, then they are optimal:
▶ from complementary slackness: f0 (x̃) = L(x̃, 𝜆̃, 𝜈̃)
▶ from 4th condition (and convexity): g(𝜆̃, 𝜈̃) = L(x̃, 𝜆̃, 𝜈̃)

hence, f0 (x̃) = g(𝜆̃, 𝜈̃)

if Slater’s condition is satisfied, then

x is optimal if and only if there exist 𝜆, 𝜈 that satisfy KKT conditions

▶ recall that Slater implies strong duality, and dual optimum is attained
▶ generalizes optimality condition ∇f0 (x) = 0 for unconstrained problem
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

maximize g(𝜆, 𝜈)
subject to 𝜆 ⪰ 0

perturbed problem and its dual

minimoize f0 (x)
subject to fi (x) ≤ ui, i = 1, . . . ,m

hi (x) = vi, i = 1, . . . , p

maximize g(𝜆, 𝜈) − uT𝜆 − vT𝜈
subject to 𝜆 ⪰ 0

▶ x is primal variable; u, v are parameters
▶ p★(u, v) is optimal value as a function of u, v
▶ p★(0, 0) is optimal value of unperturbed problem
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Global sensitivity via duality

▶ assume strong duality holds for unperturbed problem, with 𝜆★, 𝜈★ dual optimal
▶ apply weak duality to perturbed problem:

p★(u, v) ≥ g(𝜆★, 𝜈★) − uT𝜆★ − vT𝜈★ = p★(0, 0) − uT𝜆★ − vT𝜈★

▶ implications
– if 𝜆★i large: p★ increases greatly if we tighten constraint i (ui < 0)
– if 𝜆★i small: p★ does not decrease much if we loosen constraint i (ui > 0)
– if 𝜈★i large and positive: p★ increases greatly if we take vi < 0

– if 𝜈★i large and negative: p★ increases greatly if we take vi > 0

– if 𝜈★i small and positive: p★ does not decrease much if we take vi > 0

– if 𝜈★i small and negative: p★ does not decrease much if we take vi < 0
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Local sensitivity via duality
if (in addition) p★(u, v) is differentiable at (0, 0), then

𝜆★i = −𝜕p★(0, 0)
𝜕ui

, 𝜈★i = −𝜕p★(0, 0)
𝜕vi

proof (for 𝜆★i ): from global sensitivity result,

𝜕p★(0, 0)
𝜕ui

= lim
t↘0

p★(tei, 0) − p★(0, 0)
t

≥ −𝜆★i
𝜕p★(0, 0)

𝜕ui
= lim

t↗0

p★(tei, 0) − p★(0, 0)
t

≤ −𝜆★i

hence, equality

p★(u) for a problem with one (inequality) constraint:
u

p
★(u)

p
★(0) − _

★
u

u = 0
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Duality and problem reformulations

▶ equivalent formulations of a problem can lead to very different duals
▶ reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations
▶ introduce new variables and equality constraints
▶ make explicit constraints implicit or vice-versa
▶ transform objective or constraint functions, e.g., replace f0 (x) by 𝜙(f0 (x)) with 𝜙 convex,

increasing
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Introducing new variables and equality constraints

▶ unconstrained problem: minimize f0 (Ax + b)
▶ dual function is constant: g = infx L(x) = infx f0 (Ax + b) = p★

▶ we have strong duality, but dual is quite useless

▶ introduce new variable y and equality constraints y = Ax + b

minimize f0 (y)
subject to Ax + b − y = 0

▶ dual of reformulated problem is

maximize bT𝜈 − f ∗0 (𝜈)
subject to AT𝜈 = 0

▶ a nontrivial, useful dual (assuming the conjugate f ∗0 is easy to express)
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Example: Norm approximation

▶ minimize ∥Ax − b∥
▶ reformulate as minimize ∥y∥ subject to y = Ax − b
▶ recall conjugate of general norm:

∥z∥∗ =
{

0 ∥z∥∗ ≤ 1
∞ otherwise

▶ dual of (reformulated) norm approximation problem:

maximize bT𝜈

subject to AT𝜈 = 0, ∥𝜈∥∗ ≤ 1
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Theorems of alternatives

▶ consider two systems of inequality and equality constraints
▶ called weak alternatives if no more than one system is feasible
▶ called strong alternatives if exactly one of them is feasible
▶ examples: for any a ∈ R, with variable x ∈ R,

– x > a and x ≤ a − 1 are weak alternatives
– x > a and x ≤ a are strong alternatives

▶ a theorem of alternatives states that two inequality systems are (weak or strong)
alternatives

▶ can be considered the extension of duality to feasibility problems
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Feasibility problems

▶ consider system of (not necessarily convex) inequalities and equalities

fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

▶ express as feasibility problem

minimize 0
subject to fi (x) ≤ 0, i = 1, . . . ,m,

hi (x) = 0, i = 1, . . . , p

▶ if system if feasible, p★ = 0; if not, p★ = ∞

Convex Optimization Boyd and Vandenberghe 5.32



Duality for feasibility problems

▶ dual function of feasibility problem is g(𝜆, 𝜈) = infx

(∑m
i=1 𝜆ifi (x) +

∑p
i=1 𝜈ihi (x)

)
▶ for 𝜆 ⪰ 0, we have g(𝜆, 𝜈) ≤ p★

▶ it follows that feasibility of the inequality system

𝜆 ⪰ 0, g(𝜆, 𝜈) > 0

implies the original system is infeasible
▶ so this is a weak alternative to original system
▶ it is strong if fi convex, hi affine, and a constraint qualification holds
▶ g is positive homogeneous so we can write alternative system as

𝜆 ⪰ 0, g(𝜆, 𝜈) ≥ 1
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Example: Nonnegative solution of linear equations

▶ consider system
Ax = b, x ⪰ 0

▶ dual function is g(𝜆, 𝜈) =
{
−𝜈Tb AT𝜈 = 𝜆

−∞ otherwise

▶ can express strong alternative of Ax = b, x ⪰ 0 as

AT𝜈 ⪰ 0, 𝜈Tb ≤ −1

(we can replace 𝜈Tb ≤ −1 with 𝜈Tb = −1)

Convex Optimization Boyd and Vandenberghe 5.34



Farkas’ lemma

▶ Farkas’ lemma:
Ax ⪯ 0, cTx < 0 and ATy + c = 0, y ⪰ 0

are strong alternatives

▶ proof: use (strong) duality for (feasible) LP

minimize cTx
subject to Ax ⪯ 0
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Investment arbitrage

▶ we invest xj in each of n assets 1, . . . , n with prices p1, . . . , pn

▶ our initial cost is pTx
▶ at the end of the investment period there are only m possible outcomes i = 1, . . . ,m
▶ Vij is the payoff or final value of asset j in outcome i
▶ first investment is risk-free (cash): p1 = 1 and Vi1 = 1 for all i

▶ arbitrage means there is x with pTx < 0, Vx ⪰ 0
▶ arbitrage means we receive money up front, and our investment cannot lose
▶ standard assumption in economics: the prices are such that there is no arbitrage
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Absence of arbitrage

▶ by Farkas’ lemma, there is no arbitrage ⇐⇒ there exists y ∈ Rm
+ with VTy = p

▶ since first column of V is 1, we have 1Ty = 1
▶ y is interpreted as a risk-neutral probability on the outcomes 1, . . . ,m
▶ VTy are the expected values of the payoffs under the risk-neutral probability
▶ interpretation of VTy = p:

asset prices equal their expected payoff under the risk-neutral probability

▶ arbitrage theorem: there is no arbitrage ⇔ there exists a risk-neutral probability
distribution under which each asset price is its expected payoff
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Example

V =


1.0 0.5 0.0
1.0 0.8 0.0
1.0 1.0 1.0
1.0 1.3 4.0

 , p =


1.0
0.9
0.3

 , p̃ =


1.0
0.8
0.7


▶ with prices p, there is an arbitrage

x =


6.2

−7.7
1.5

 , pTx = −0.2, 1Tx = 0, Vx =


2.35
0.04
0.00
2.19


▶ with prices p̃, there is no arbitrage, with risk-neutral probability

y =


0.36
0.27
0.26
0.11

 VTy =


1.0
0.8
0.7


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