Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

10. Equality constrained minimization

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Equality constrained minimization

equality constrained smooth minimization problem:

minimize
$$f(x)$$

subject to $Ax = b$

- we assume
 - f convex, twice continuously differentiable
 - $-A \in \mathbf{R}^{p \times n}$ with $\mathbf{rank} A = p$
 - $-p^{\star}$ is finite and attained
- **optimality conditions:** x^* is optimal if and only if there exists a v^* such that

$$\nabla f(x^*) + A^T v^* = 0, \qquad Ax^* = b$$

Equality constrained quadratic minimization

- $f(x) = (1/2)x^T P x + q^T x + r, P \in \mathbf{S}_+^n$
- $\nabla f(x) = Px + q$
- optimality conditions are a system of linear equations

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ v^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \implies x^T Px > 0$$

• equivalent condition for nonsingularity: $P + A^T A > 0$

Eliminating equality constraints

- represent feasible set $\{x \mid Ax = b\}$ as $\{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}$
 - $-\hat{x}$ is (any) **particular solution** of Ax = b
 - range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)
- reduced or eliminated problem: minimize $f(Fz + \hat{x})$
- ▶ an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^* , obtain x^* and v^* as

$$x^* = Fz^* + \hat{x}, \qquad v^* = -(AA^T)^{-1}A\nabla f(x^*)$$

Example: Optimal resource allocation

- ▶ allocate resource amount $x_i \in \mathbf{R}$ to agent i
- ightharpoonup agent *i* cost if $f_i(x_i)$
- resource budget is b, so $x_1 + \cdots + x_n = b$
- resource allocation problem is

minimize
$$f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)$$

subject to $x_1 + x_2 + \cdots + x_n = b$

• eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

reduced problem: minimize $f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b-x_1-\cdots-x_{n-1})$

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Newton step

Newton step Δx_{nt} of f at feasible x is given by solution v of

$$\left[\begin{array}{cc} \nabla^2 f(x) & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = \left[\begin{array}{c} -\nabla f(x) \\ 0 \end{array}\right]$$

 $ightharpoonup \Delta x_{\rm nt}$ solves second order approximation (with variable v)

minimize
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2)v^T \nabla^2 f(x)v$$

subject to $A(x+v) = b$

 $ightharpoonup \Delta x_{\rm nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Newton decrement

Newton decrement for equality constrained minimization is

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

• gives an estimate of $f(x) - p^*$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \lambda(x)^2/2$$

directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general, $\lambda(x) \neq (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$.
- 2. Stopping criterion. **quit** if $\lambda^2/2 \le \epsilon$.
- 3. *Line search.* Choose step size *t* by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

- ▶ a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton's method and elimination

- reduced problem: minimize $\tilde{f}(z) = f(Fz + \hat{x})$
 - variables z ∈ \mathbf{R}^{n-p}
 - \hat{x} satisfies $A\hat{x} = b$; rank F = n p and AF = 0
- (unconstrained) Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$
- ▶ iterates of Newton's method with equality constraints, started at $x^{(0)} = Fz^{(0)} + \hat{x}$, are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

hence, don't need separate convergence analysis

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Newton step at infeasible points

• with y = (x, v), write optimality condition as r(y) = 0, where

$$r(y) = (\nabla f(x) + A^T v, Ax - b)$$

is primal-dual residual

- ▶ consider $x \in \text{dom } f, Ax \neq b, i.e., x$ is infeasible
- linearizing r(y) = 0 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta v_{\rm nt} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + A^T v \\ Ax - b \end{bmatrix}$$

 $ightharpoonup (\Delta x_{\rm nt}, \Delta v_{\rm nt})$ is called **infeasible** or **primal-dual** Newton step at x

given starting point $x \in \operatorname{dom} f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$.

repeat

- 1. Compute primal and dual Newton steps Δx_{nt} , Δv_{nt} .
- 2. Backtracking line search on $||r||_2$.

$$t := 1$$
.

while
$$||r(x + t\Delta x_{\text{nt}}, v + t\Delta v_{\text{nt}})||_2 > (1 - \alpha t)||r(x, v)||_2$$
, $t := \beta t$.

3. Update. $x := x + t\Delta x_{nt}$, $v := v + t\Delta v_{nt}$.

until
$$Ax = b$$
 and $||r(x, v)||_2 \le \epsilon$.

- ▶ not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $||r(y)||_2$ in direction $\Delta y = (\Delta x_{\rm nt}, \Delta v_{\rm nt})$ is

$$\frac{d}{dt} \| r(y + t\Delta y) \|_2 \Big|_{t=0} = -\| r(y) \|_2$$

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Solving KKT systems

feasible and infeasible Newton methods require solving KKT system

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

10.15

- ▶ in general, can use LDL^T factorization
- or elimination (if H nonsingular and easily inverted):
 - solve $AH^{-1}A^Tw = h AH^{-1}g$ for w
 - $v = -H^{-1}(g + A^T w)$

Example: Equality constrained analytic centering

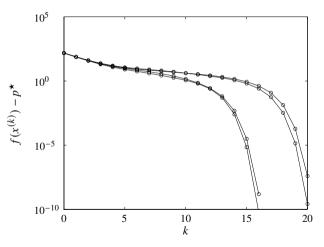
- **primal problem:** minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = b
- **dual problem:** maximize $-b^T v + \sum_{i=1}^n \log(A^T v)_i + n$
 - recover x^* as $x_i^* = 1/(A^T v)_i$
- three methods to solve:
 - Newton method with equality constraints
 - Newton method applied to dual problem
 - infeasible start Newton method

these have different requirements for initialization

• we'll look at an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points

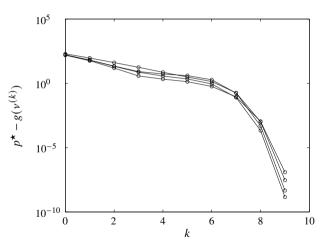
Newton's method with equality constraints

• requires $x^{(0)} > 0$, $Ax^{(0)} = b$



Newton method applied to dual problem

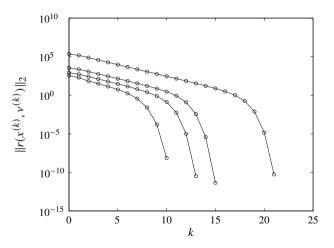
• requires $A^T v^{(0)} > 0$



Convex Optimization Boyd and Vandenberghe 10.18

Infeasible start Newton method

requires $x^{(0)} > 0$



Convex Optimization Boyd and Vandenberghe 10.19

Complexity per iteration of three methods is identical

for feasible Newton method, use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- ► for Newton system applied to dual, solve $A \operatorname{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{diag}(A^T \nu)^{-1} \mathbf{1}$
- ▶ for infeasible start Newton method, use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-1} \mathbf{1} - A^T \nu \\ b - Ax \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

► conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Example: Network flow optimization

- ▶ directed graph with n arcs, p + 1 nodes
- \triangleright x_i : flow through arc i; ϕ_i : strictly convex flow cost function for arc i
- ▶ incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1)\times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- **reduced incidence matrix** $A \in \mathbb{R}^{p \times n}$ is \tilde{A} with last row removed
- **rank** A = p if graph is connected
- ▶ flow conservation is Ax = b, $b \in \mathbb{R}^p$ is (reduced) source vector
- ▶ **network flow optimization problem**: minimize $\sum_{i=1}^{n} \phi_i(x_i)$ subject to Ax = b

KKT system

KKT system is

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

- $ightharpoonup H = \operatorname{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n)),$ positive diagonal
- solve via elimination:

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad v = -H^{-1}(g + A^{T}w)$$

ightharpoonup sparsity pattern of $AH^{-1}A^T$ is given by graph connectivity

$$(AH^{-1}A^T)_{ij} \neq 0 \iff (AA^T)_{ij} \neq 0$$
 $\iff \text{nodes } i \text{ and } j \text{ are connected by an arc}$

Analytic center of linear matrix inequality

- ▶ minimize $-\log \det X$ subject to $\operatorname{tr}(A_i X) = b_i, i = 1, ..., p$
- optimality conditions

$$X^* > 0,$$
 $-(X^*)^{-1} + \sum_{j=1}^p \nu_j^* A_i = 0,$ $\mathbf{tr}(A_i X^*) = b_i, \quad i = 1, \dots, p$

Newton step ΔX at feasible X is defined by

$$X^{-1}(\Delta X)X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \quad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

- ▶ follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} X^{-1}(\Delta X)X^{-1}$
- ightharpoonup n(n+1)/2 + p variables ΔX , w

Solution by block elimination

- eliminate ΔX from first equation to get $\Delta X = X \sum_{j=1}^{p} w_j X A_j X$
- ightharpoonup substitute ΔX in second equation to get

$$\sum_{j=1}^{p} \mathbf{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \dots, p$$

- ▶ a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$
- form and solve this set of equations to get w, then get ΔX from equation above

Flop count

- find Cholesky factor L of X $(1/3)n^3$
- form p products $L^T A_j L$ $(3/2)pn^3$
- ► form p(p+1)/2 inner products $\mathbf{tr}((L^T A_i L)(L^T A_j L))$ to get coefficent matrix $(1/2)p^2n^2$
- ► solve $p \times p$ system of equations via Cholesky factorization $(1/3)p^3$
- flop count dominated by $pn^3 + p^2n^2$
- rightharpoonup cf. naïve method, $(n^2 + p)^3$