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Equality constrained minimization

▶ equality constrained smooth minimization problem:

minimize f (x)
subject to Ax = b

▶ we assume
– f convex, twice continuously differentiable
– A ∈ Rp×n with rank A = p
– p★ is finite and attained

▶ optimality conditions: x★ is optimal if and only if there exists a 𝜈★ such that

∇f (x★) + AT𝜈★ = 0, Ax★ = b
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Equality constrained quadratic minimization

▶ f (x) = (1/2)xTPx + qTx + r, P ∈ Sn
+

▶ ∇f (x) = Px + q
▶ optimality conditions are a system of linear equations[

P AT

A 0

] [
x★
𝜈★

]
=

[
−q
b

]
▶ coefficient matrix is called KKT matrix
▶ KKT matrix is nonsingular if and only if

Ax = 0, x ≠ 0 =⇒ xTPx > 0

▶ equivalent condition for nonsingularity: P + ATA ≻ 0
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Eliminating equality constraints

▶ represent feasible set {x | Ax = b} as {Fz + x̂ | z ∈ Rn−p}
– x̂ is (any) particular solution of Ax = b
– range of F ∈ Rn×(n−p) is nullspace of A (rank F = n − p and AF = 0)

▶ reduced or eliminated problem: minimize f (Fz + x̂)

▶ an unconstrained problem with variable z ∈ Rn−p

▶ from solution z★, obtain x★ and 𝜈★ as

x★ = Fz★ + x̂, 𝜈★ = −(AAT )−1A∇f (x★)

Convex Optimization Boyd and Vandenberghe 10.4



Example: Optimal resource allocation

▶ allocate resource amount xi ∈ R to agent i
▶ agent i cost if fi (xi)
▶ resource budget is b, so x1 + · · · + xn = b
▶ resource allocation problem is

minimize f1 (x1) + f2 (x2) + · · · + fn (xn)
subject to x1 + x2 + · · · + xn = b

▶ eliminate xn = b − x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I

−1T

]
∈ Rn×(n−1)

▶ reduced problem: minimize f1 (x1) + · · · + fn−1 (xn−1) + fn (b − x1 − · · · − xn−1)

Convex Optimization Boyd and Vandenberghe 10.5



Outline

Equality constrained minimization

Newton’s method with equality constraints

Infeasible start Newton method

Implementation

Convex Optimization Boyd and Vandenberghe 10.6



Newton step

▶ Newton step Δxnt of f at feasible x is given by solution v of[
∇2f (x) AT

A 0

] [
v
w

]
=

[
−∇f (x)

0

]
▶ Δxnt solves second order approximation (with variable v)

minimize f̂ (x + v) = f (x) + ∇f (x)Tv + (1/2)vT∇2f (x)v
subject to A(x + v) = b

▶ Δxnt equations follow from linearizing optimality conditions

∇f (x + v) + ATw ≈ ∇f (x) + ∇2f (x)v + ATw = 0, A(x + v) = b
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Newton decrement

▶ Newton decrement for equality constrained minimization is

𝜆(x) =
(
ΔxT

nt∇2f (x)Δxnt

)1/2
=

(
−∇f (x)TΔxnt

)1/2

▶ gives an estimate of f (x) − p★ using quadratic approximation f̂ :

f (x) − inf
Ay=b

f̂ (y) = 𝜆(x)2/2

▶ directional derivative in Newton direction:

d
dt

f (x + tΔxnt)
����
t=0

= −𝜆(x)2

▶ in general, 𝜆(x) ≠
(
∇f (x)T∇2f (x)−1∇f (x)

)1/2
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Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance 𝜖 > 0.
repeat

1. Compute the Newton step and decrement Δxnt, 𝜆(x).
2. Stopping criterion. quit if 𝜆2/2 ≤ 𝜖 .
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tΔxnt.

▶ a feasible descent method: x(k) feasible and f (x(k+1) ) < f (x(k) )
▶ affine invariant
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Newton’s method and elimination

▶ reduced problem: minimize f̃ (z) = f (Fz + x̂)
– variables z ∈ Rn−p

– x̂ satisfies Ax̂ = b; rank F = n − p and AF = 0

▶ (unconstrained) Newton’s method for f̃ , started at z(0) , generates iterates z(k)

▶ iterates of Newton’s method with equality constraints, started at x(0) = Fz(0) + x̂, are

x(k+1) = Fz(k) + x̂

▶ hence, don’t need separate convergence analysis

Convex Optimization Boyd and Vandenberghe 10.10



Outline

Equality constrained minimization

Newton’s method with equality constraints

Infeasible start Newton method

Implementation

Convex Optimization Boyd and Vandenberghe 10.11



Newton step at infeasible points

▶ with y = (x, 𝜈), write optimality condition as r(y) = 0, where

r(y) = (∇f (x) + AT𝜈,Ax − b)

is primal-dual residual

▶ consider x ∈ dom f , Ax ≠ b, i.e., x is infeasible

▶ linearizing r(y) = 0 gives r(y + Δy) ≈ r(y) + Dr(y)Δy = 0:[
∇2f (x) AT

A 0

] [
Δxnt
Δ𝜈nt

]
= −

[
∇f (x) + AT𝜈

Ax − b

]
▶ (Δxnt,Δ𝜈nt) is called infeasible or primal-dual Newton step at x
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Infeasible start Newton method

given starting point x ∈ dom f , 𝜈, tolerance 𝜖 > 0, 𝛼 ∈ (0, 1/2), 𝛽 ∈ (0, 1).
repeat

1. Compute primal and dual Newton steps Δxnt, Δ𝜈nt.
2. Backtracking line search on ∥r∥2.

t := 1.
while ∥r(x + tΔxnt, 𝜈 + tΔ𝜈nt)∥2 > (1 − 𝛼t)∥r(x, 𝜈)∥2, t := 𝛽t.

3. Update. x := x + tΔxnt, 𝜈 := 𝜈 + tΔ𝜈nt.
until Ax = b and ∥r(x, 𝜈)∥2 ≤ 𝜖 .

▶ not a descent method: f (x(k+1) ) > f (x(k) ) is possible
▶ directional derivative of ∥r(y)∥2 in direction Δy = (Δxnt,Δ𝜈nt) is

d
dt

∥r(y + tΔy)∥2

����
t=0

= −∥r(y)∥2
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Solving KKT systems

▶ feasible and infeasible Newton methods require solving KKT system[
H AT

A 0

] [
v
w

]
= −

[
g
h

]
▶ in general, can use LDLT factorization

▶ or elimination (if H nonsingular and easily inverted):
– solve AH−1ATw = h − AH−1g for w
– v = −H−1 (g + ATw)
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Example: Equality constrained analytic centering

▶ primal problem: minimize −∑n
i=1 log xi subject to Ax = b

▶ dual problem: maximize −bT𝜈 +∑n
i=1 log(AT𝜈)i + n

– recover x★ as x★i = 1/(AT 𝜈)i

▶ three methods to solve:
– Newton method with equality constraints
– Newton method applied to dual problem
– infeasible start Newton method

these have different requirements for initialization

▶ we’ll look at an example with A ∈ R100×500, different starting points
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Newton’s method with equality constraints
▶ requires x(0) ≻ 0, Ax(0) = b
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Newton method applied to dual problem
▶ requires AT𝜈 (0) ≻ 0
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Infeasible start Newton method
▶ requires x(0) ≻ 0
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Complexity per iteration of three methods is identical

▶ for feasible Newton method, use block elimination to solve KKT system[
diag(x)−2 AT

A 0

] [
Δx
w

]
=

[
diag(x)−11

0

]
reduces to solving A diag(x)2ATw = b

▶ for Newton system applied to dual, solve A diag(AT𝜈)−2ATΔ𝜈 = −b + A diag(AT𝜈)−11
▶ for infeasible start Newton method, use block elimination to solve KKT system[

diag(x)−2 AT

A 0

] [
Δx
Δ𝜈

]
=

[
diag(x)−11 − AT𝜈

b − Ax

]
reduces to solving A diag(x)2ATw = 2Ax − b

▶ conclusion: in each case, solve ADATw = h with D positive diagonal
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Example: Network flow optimization

▶ directed graph with n arcs, p + 1 nodes
▶ xi: flow through arc i; 𝜙i: strictly convex flow cost function for arc i
▶ incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =


1 arc j leaves node i

−1 arc j enters node i
0 otherwise

▶ reduced incidence matrix A ∈ Rp×n is Ã with last row removed
▶ rank A = p if graph is connected
▶ flow conservation is Ax = b, b ∈ Rp is (reduced) source vector

▶ network flow optimization problem: minimize
∑n

i=1 𝜙i (xi) subject to Ax = b
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KKT system

▶ KKT system is [
H AT

A 0

] [
v
w

]
= −

[
g
h

]
▶ H = diag(𝜙′′1 (x1), . . . , 𝜙′′n (xn)), positive diagonal
▶ solve via elimination:

AH−1ATw = h − AH−1g, v = −H−1 (g + ATw)

▶ sparsity pattern of AH−1AT is given by graph connectivity

(AH−1AT )ij ≠ 0 ⇐⇒ (AAT )ij ≠ 0
⇐⇒ nodes i and j are connected by an arc
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Analytic center of linear matrix inequality

▶ minimize − log det X subject to tr(AiX) = bi, i = 1, . . . , p
▶ optimality conditions

X★ ≻ 0, −(X★)−1 +
p∑︁

j=1
𝜈★j Ai = 0, tr(AiX★) = bi, i = 1, . . . , p

▶ Newton step ΔX at feasible X is defined by

X−1 (ΔX)X−1 +
p∑︁

j=1
wjAi = X−1, tr(AiΔX) = 0, i = 1, . . . , p

▶ follows from linear approximation (X + ΔX)−1 ≈ X−1 − X−1 (ΔX)X−1

▶ n(n + 1)/2 + p variables ΔX, w
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Solution by block elimination

▶ eliminate ΔX from first equation to get ΔX = X −∑p
j=1 wjXAjX

▶ substitute ΔX in second equation to get

p∑︁
j=1

tr(AiXAjX)wj = bi, i = 1, . . . , p

▶ a dense positive definite set of linear equations with variable w ∈ Rp

▶ form and solve this set of equations to get w, then get ΔX from equation above
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Flop count

▶ find Cholesky factor L of X (1/3)n3

▶ form p products LTAjL (3/2)pn3

▶ form p(p + 1)/2 inner products tr((LTAiL) (LTAjL)) to get coefficent matrix (1/2)p2n2

▶ solve p × p system of equations via Cholesky factorization (1/3)p3

▶ flop count dominated by pn3 + p2n2

▶ cf. naı̈ve method, (n2 + p)3
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