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Definition
> f:R" — Ris convex if domf is a convex set and for all x,y e domf,0 < 6 < 1,

f(Ox+(1-0)y) <6f(x) +(1-6)f(y)

.f(»)
(x.f(x))

> fis concave if —f is convex
> fis strictly convex if domf is convex and for x,y € domf, x #y,0 < 0 < 1,

f(Ox+(1-06)y) <6f(x) +(1-6)f(y)
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Examples on R

convex functions:
> affine: ax+bon R, foranya,b e R
> exponential: e*, forany a € R
> powers: x* on R, fora>1ora <0
>
> positive part (relu): max{0, x}
concave functions:
> affine: ax+bon R, foranya,b e R
» powers: x* on R, for0<a <1
> logarithm: logx on R,
> entropy: —xlogx on Ry,
> negative part: min{0, x}
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Examples on R”

convex functions:
> affine functions: f(x) =a’x+b
> any norm, e.g., the £, norms

= lxllp = (bea PP+ -+ [ lP) P for p > 1

= |lxlleo = max{|xyl, ..., |xal}
> f : 2 32 4. 452
sum of squares: ||x[|5 = x7 +--- +x;,
> max function: max(x) = max{xy, x,...,x,}
» softmax or log-sum-exp function: log(exp x| + - - - + expx,)

Convex Optimization Boyd and Vandenberghe

3.4



Examples on R"*"

> X e R™" (m x n matrices) is the variable
» general affine function has form

m n
F(X) =tr(ATX) + b = Z AXy +b
i=1 j=1

forsome A € R™" b e R

> spectral norm (maximum singular value) is convex
FX) = 11X1l2 = Omax (X) = (lmax (X7 X)) /2

> log-determinant: for X € S%,, f(X) = logdet X is concave

Convex Optimization Boyd and Vandenberghe

3.5



Extended-value extension

» suppose f is convex on R”, with domain dom f
> its extended-value extension £ is function f : R* — R U {0}

2~ _ | f(x) xedomf
f(x)—{oo x ¢ domf

> often simplifies notation; for example, the condition
0<6<1 = FfOx+(1-0)y) <6f(x)+(1-0)F()

(as an inequality in R U {c0}), means the same as the two conditions

— domf is convex
—x,yedomf,0<0<1 = f(Ox+(1-0)y) <0f(x)+(1-6)f(y)
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Restriction of a convex function to a line

» f:R" — Ris convex if and only if the function g : R — R,
gty =f(x+t), domg = {t| x+1tv € domf}
is convex (in ¢) for any x € domf, v € R"

» can check convexity of f by checking convexity of functions of one variable
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Example

> f:S" - Rwithf(X) =logdetX, domf =S,
» consider linein S" givenby X +tV, X €S, Ve S", reR

g(1)

log det(X +tV)
log det (xl/2 (1+ zX—l/zvx-l/z)xl/z)

= logdetX + logdet (I+ tX_1/2VX_1/2)

n

= logdetX + Z log(1 +t4;)
i=1

where ; are the eigenvalues of X~1/2vx~1/2

> gis concave in ¢ (for any choice of X € S,, V € S§"); hence f is concave
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First-order condition
> fis differentiable if domf is open and the gradient

D) YW W)

9’ 9 e Rn
oxy x> oxy,

Vf(x) =

exists at each x € domf
> 1st-order condition: differentiable f with convex domain is convex if and only if

fO) = f(x) + V) (y-x) forallx,y e domf
> first order Taylor approximation of convex f is a global underestimator of f
»

f() +Vf () (y =)

(x.f(x))
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Second-order conditions

> fis twice differentiable if domf is open and the Hessian V2f(x) € S”,

9%f (x)
V2 i~ 3 _a_ > .9'=1’~--7 s
f(X)j ébct-@xj bJ "

exists at each x € domf

> 2nd-order conditions: for twice differentiable f with convex domain

— fis convex if and only if V2f(x) = O for all x € dom f
— if V2f(x) > 0 for all x € dom/f, then f is strictly convex
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Examples

> quadratic function: f(x) = (1/2)x" Px + g"x + r (with P € 8")

=P

Vf(x)=Px+q,  V*(x)

convex if P > 0 (concave if P < 0)

> |east

2
2

squares objective: f(x) = ||[Ax — b|

V2f(x) = 24TA

Vf(x) = 24T (Ax - b),

(for any A)
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More examples

> log-sum-exp: f(x) = log >} _, expx; is convex

V2 (x) = dlag(Z) (zx = exp xz)

1
( sz)2ZZ
> to show Vf(x) > 0, we must verify that v/ V2f(x)v > 0 for all v:

(S zwvp) (Zezr) — (i Vka)2
(Zk Zk)2

since (X vizx)? < (X zvp) (Zg z) (from Cauchy-Schwarz inequality)

VIV (o =

> geometric mean: f(x) = ([];_, xc)'/" on R, is concave (similar proof as above)
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Epigraph and sublevel set

> a-sublevel setof f: R" —» Ris C, = {x e domf | f(x) < a}
> sublevel sets of convex functions are convex sets (but converse is false)

> epigraph of f : R" — Ris epif = {(x,7) € R™! | x € domf, f(x) < 1}

epif

> fis convex if and only if epif is a convex set
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Jensen’s inequality

> basic inequality: if f is convex, then for x,y € domf,0 <6 < 1,

J(Ox+(1-06)y) < 6f(x) + (1 -6)f(y)

> extension: if f is convex and z is a random variable on domf,

f(Ez) <Ef(2)
> basic inequality is special case with discrete distribution

prob(z =x) =6, prob(z=y)=1-6
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Example: log-normal random variable

suppose X ~ N (u, 2)

with f(u) = expu, Y = f(X) is log-normal
we have Ef(X) = exp(u + 0%/2)
Jensen’s inequality is

vV v vy

JEX) =expu < Ef(X) = exp(u+07/2)

which indeed holds since expo?/2 > 1
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Example: log-normal random variable
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Operations that preserve convexity
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Showing a function is convex

methods for establishing convexity of a function f

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show V?f(x) > 0
— recommended only for very simple functions

3. show that f is obtained from simple convex functions by operations that preserve convexity

— nonnegative weighted sum

— composition with affine function

— pointwise maximum and supremum
— composition

— minimization

— perspective

you’ll mostly use methods 2 and 3
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Nonnegative scaling, sum, and integral

> nonnegative multiple: «of is convex if f is convex, @ > 0
> sum: f] + f> convex if f1, f> convex

> infinite sum: if fi, f>, . .. are convex functions, infinite sum Zj’ilﬁ is convex

> integral: if f(x, @) is convex in x for each @ € A, then f(x, @) da is convex
aceA

» there are analogous rules for concave functions
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Composition with affine function

(pre-)composition with affine function: f(Ax + b) is convex if f is convex

examples
> log barrier for linear inequalities

m
fx) = —Zlog(bi ~d'x), domf={x|alx<b,i=1,...
i=1

> norm approximation error: f(x) = ||Ax — b|| (any norm)
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Pointwise maximum

if f1, ..., fin @re convex, then f(x) = max{f] (x), ..., m(x)} is convex

examples

> piecewise-linear function: f(x) = max;-; m(al.Tx + b;)

.....

> sum of r largest components of x € R":

f(x) =X[1) tX[p2) T X
(x[i1 is ith largest component of x)

proof: f(x) =max{x; +x;, + - -+x;, |1 <ij <ip<---<i,<n}

Convex Optimization Boyd and Vandenberghe 3.21



Pointwise supremum

if f(x, y) is convex in x for each y € A, then g(x) = sup,c  f(x,y) is convex

examples
> distance to farthest point in a set C: f(x) = sup,c¢ [lx -yl
> maximum eigenvalue of symmetric matrix: for X € §", Amax(X) = supyjy,=1 vy Xy is convex

» support function of a set C: S¢(x) = supyecyTx is convex
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Partial minimization

> the function g(x) = inf,ec f(x,y) is called the partial minimization of f (w.r.t. y)
> if f(x,y) is convex in (x,y) and C is a convex set, then partial minimization g is convex

examples
> f(x,y) =xTAx + 2x" By + yT Cy with
[ A B

BT C:|ZO’ C>0

minimizing over y gives g(x) = infy f(x,y) = xT (A - BC™'BT)x
g is convex, hence Schur complement A — BC™'B” > 0

> distance to a set: dist(x, S) = inf,cg [|x — y|| is convex if S is convex
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Composition with scalar functions

» compositionof g: R" - Rand 4 : R — Risf(x) = h(g(x)) (writenasf =hog)
» composition f is convex if

— g convex, h convex, h nondecreasing
— or g concave, h convex, h nonincreasing

(monotonicity must hold for extended-value extension )
» proof (for n = 1, differentiable g, /)

f7(x) = B (g(x)g’ (0)* + 1 (8(x))g" (x)
examples
> f(x) = exp g(x) is convex if g is convex

> f(x) =1/g(x) is convex if g is concave and positive
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General composition rule

» composition of g : R” — Rfand i1 : R* — Ris f(x) = h(g(x)) = h(g1(x), g2(x), . ..

> fis convex if i is convex and for each i one of the following holds

— g; convex, i nondecreasing in its ith argument
— g; concave, h nonincreasing in its ith argument
— g; affine

» you will use this composition rule constantly throughout this course

> you need to commit this rule to memory
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Examples

> log 3.7, exp gi(x) is convex if g; are convex
> f(x) = p(x)?/q(x) is convex if

— pis nonnegative and convex
— g is positive and concave

» composition rule subsumes others, e.g.,
— af is convex if f is,and @ > 0
— sum of convex (concave) functions is convex (concave)
— max of convex functions is convex
— min of concave functions is concave

Convex Optimization Boyd and Vandenberghe



Outline

Constructive convex analysis

Convex Optimization Boyd and Vandenberghe 3.27



Constructive convexity verification

v

start with function f given as expression
» build parse tree for expression

— leaves are variables or constants
— nodes are functions of child expressions

> use composition rule to tag subexpressions as convex, concave, affine, or none
» if root node is labeled convex (concave), then f is convex (concave)
> extension: tag sign of each expression, and use sign-dependent monotonicity

» this is sufficient to show f is convex (concave), but not necessary
» this method for checking convexity (concavity) is readily automated
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Example

the function

2
fley =2 e

— max(x,y)

is convex

constructive analysis:
> (leaves) x, y, and 1 are affine
> max(x,y) is convex; x — y is affine
» 1 —max(x,y) is concave
> function u?/v is convex, monotone decreasing in v for v > 0
> fis composition of u?/v with u = x — y, v = 1 — max(x, y), hence convex
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Example (from dcp.stanford.edu)

Variables: x,y
Parameters: None
Positive Parameters: None

Curvature —’IU quad_over_lin(x -y, 1 - max(x, y)) +|(7 Sign

constant + positive
. quad_over_lin .
~ affine — negative
+ unki
\U convex A1-maxxy) + =+ unknown

[\ concave

@ unknown D I:I

|/Xi| |/yi| | 1+| |Umax(x,y)i|

=
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Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave functions as
expressions using constructive convex analysis

> expressions formed from
— variables,
— constants,
— and atomic functions from a library

v

atomic functions have known convexity, monotonicity, and sign properties

v

all subexpressions match general composition rule
a valid DCP function is

— convex-by-construction
— ‘syntactically’ convex (can be checked ‘locally’)

convexity depends only on attributes of atomic functions, not their meanings
— e.g., could swap /- and +-, or exp - and (-)4, since their attributes match

v

v
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CVXPY example

import cvxpy as cp
x = cp.Variable()
y = cp.Variable()

expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))

expr.curvature # Convex
expr.sign # Positive
expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)
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DCP is only sufficient

> consider convex function f(x) = V1 + x2
> expression f1 = cp.sqrt(l+cp.square(x)) is not DCP

> expression £2 = cp.norm2([1,x]) is DCP

\4

CVXPY will not recognize £1 as convex, even though it represents a convex function
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Perspective and conjugate
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Perspective

> the perspective of a function f : R* — R is the function g : R” xR — R,
glx, 1) =tf(x/1), domg = {(x,1) | x/t € domf, t > 0}

> gis convex if f is convex

examples
> f(x) =xTxis convex; so g(x, ) = xTx/t is convex fort > 0
> f(x) = —logx is convex; so relative entropy g(x, ) = tlogt — tlog x is convex on R2,
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Conjugate function

> the conjugate of a function f is f*(y) = Supxedomf(yTx -f(x))

()

0.~ o)

> f*is convex (even if f is not)
> will be useful in chapter 5
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Examples

> negative logarithm f(x) = —logx
i | -1-log(-y) y<O
I o) = ilig(xyﬂ()gx) = { o otherwise
> strictly convex quadratic, f(x) = (1/2)x” Qx with Q € S,

£ = sup7x = (121 09 = 33707y
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Quasiconvex functions

> f:R" — Ris quasiconvex if domf is convex and the sublevel sets

Se ={xedomf |f(x) < a}

are convex for all a

> fis quasiconcave if —f is quasiconvex
> fis quasilinear if it is quasiconvex and quasiconcave
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Examples

> +/|x| is quasiconvex on R

» ceil(x) = inf{z € Z | z > x} is quasilinear
> logxis quasilinear on R,

> f(x1,x) = x1x; is quasiconcave on R2,
> linear-fractional function

dom/f = {x|c"x+d >0}

is quasilinear
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Example: Internal rate of return

» cash flow x = (xp, . .., X,); x; is payment in period i (to us if x; > 0)
> we assume xg < 0 (i.e., an initial investment) and xo + x; +---+x, >0
> net present value (NPV) of cash flow x, for interest rate r, is PV(x,r) = 3L (1 +r)~'x;

> internal rate of return (IRR) is smallest interest rate for which PV (x, r) = 0:

IRR(x) = inf{r > 0 | PV(x,7) = 0}

> IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(x) >R Z(l +7)7 ;> 0for0 <r <R
i=0
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Properties of quasiconvex functions
» modified Jensen inequality: for quasiconvex f
0<0<1 = f(Ox+(1-0)y) <max{f(x),f(y)}

> first-order condition: differentiable f with convex domain is quasiconvex if and only if

fM<fo = V@' -x<0

Vi (x)

» sum of quasiconvex functions is not necessarily quasiconvex
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