
Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

B. Numerical linear algebra background

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Convex Optimization Boyd and Vandenberghe B.1

Flop count

▶ flop (floating-point operation): one addition, subtraction, multiplication, or division of two
floating-point numbers

▶ to estimate complexity of an algorithm
– express number of flops as a (polynomial) function of the problem dimensions
– simplify by keeping only the leading terms

▶ not an accurate predictor of computation time on modern computers, but useful as a rough
estimate of complexity

Convex Optimization Boyd and Vandenberghe B.2

Basic linear algebra subroutines (BLAS)

vector-vector operations (x, y ∈ Rn) (BLAS level 1)
▶ inner product xTy: 2n − 1 flops (≈ 2n, O(n))
▶ sum x + y, scalar multiplication 𝛼x: n flops

matrix-vector product y = Ax with A ∈ Rm×n (BLAS level 2)
▶ m(2n − 1) flops (≈ 2mn)
▶ 2N if A is sparse with N nonzero elements
▶ 2p(n + m) if A is given as A = UVT , U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p (BLAS level 3)
▶ mp(2n − 1) flops (≈ 2mnp)
▶ less if A and/or B are sparse
▶ (1/2)m(m + 1) (2n − 1) ≈ m2n if m = p and C symmetric

Convex Optimization Boyd and Vandenberghe B.3

BLAS on modern computers

▶ there are good implementations of BLAS and variants (e.g., for sparse matrices)
▶ CPU single thread speeds typically 1–10 Gflops/s (109 flops/sec)
▶ CPU multi threaded speeds typically 10–100 Gflops/s
▶ GPU speeds typically 100 Gflops/s–1 Tflops/s (1012 flops/sec)

Convex Optimization Boyd and Vandenberghe B.4

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Convex Optimization Boyd and Vandenberghe B.5

Complexity of solving linear equations

▶ A ∈ Rn×n is invertible, b ∈ Rn

▶ solution of Ax = b is x = A−1b

▶ solving Ax = b, i.e., computing x = A−1b
– almost never done by computing A−1, then multiplying by b
– for general methods, O(n3)
– (much) less if A is structured (banded, sparse, Toeplitz, . . .)
– e.g., for A with half-bandwidth k (Aij = 0 for |i − j | > k, O(k2n)

▶ it’s super useful to recognize matrix structure that can be exploited in solving Ax = b

Convex Optimization Boyd and Vandenberghe B.6

Linear equations that are easy to solve

▶ diagonal matrices: n flops; x = A−1b = (b1/a11, . . . , bn/ann)

▶ lower triangular: n2 flops via forward substitution

x1 := b1/a11

x2 := (b2 − a21x1)/a22

x3 := (b3 − a31x1 − a32x2)/a33
...

xn := (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

▶ upper triangular: n2 flops via backward substitution

Convex Optimization Boyd and Vandenberghe B.7

Linear equations that are easy to solve

▶ orthogonal matrices (A−1 = AT):
– 2n2 flops to compute x = ATb for general A
– less with structure, e.g., if A = I − 2uuT with ∥u∥2 = 1, we can compute x = ATb = b − 2(uTb)u in

4n flops

▶ permutation matrices: for 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋n) a permutation of (1, 2, . . . , n)

aij =

{
1 j = 𝜋i
0 otherwise

– interpretation: Ax = (x𝜋1 , . . . , x𝜋n)
– satisfies A−1 = AT , hence cost of solving Ax = b is 0 flops
– example:

A =


0 1 0
0 0 1
1 0 0

 , A−1 = AT =


0 0 1
1 0 0
0 1 0


Convex Optimization Boyd and Vandenberghe B.8

Factor-solve method for solving Ax = b

▶ factor A as a product of simple matrices (usually 2–5):

A = A1A2 · · ·Ak

▶ e.g., Ai diagonal, upper or lower triangular, orthogonal, permutation, . . .

▶ compute x = A−1b = A−1
k · · ·A−1

2 A−1
1 b by solving k ‘easy’ systems of equations

A1x1 = b, A2x2 = x1, . . . Akx = xk−1

▶ cost of factorization step usually dominates cost of solve step

Convex Optimization Boyd and Vandenberghe B.9

Solving equations with multiple righthand sides

▶ we wish to solve
Ax1 = b1, Ax2 = b2, . . . Axm = bm

▶ cost: one factorization plus m solves

▶ called factorization caching

▶ when factorization cost dominates solve cost, we can solve a modest number of equations
at the same cost as one (!!)

Convex Optimization Boyd and Vandenberghe B.10

LU factorization

▶ every nonsingular matrix A can be factored as A = PLU with P a permutation, L lower
triangular, U upper triangular

▶ factorization cost: (2/3)n3 flops

Solving linear equations by LU factorization.
given a set of linear equations Ax = b, with A nonsingular.

1. LU factorization. Factor A as A = PLU ((2/3)n3 flops).
2. Permutation. Solve Pz1 = b (0 flops).
3. Forward substitution. Solve Lz2 = z1 (n2 flops).
4. Backward substitution. Solve Ux = z2 (n2 flops).

▶ total cost: (2/3)n3 + 2n2 ≈ (2/3)n3 for large n

Convex Optimization Boyd and Vandenberghe B.11

Sparse LU factorization

▶ for A sparse and invertible, factor as A = P1LUP2

▶ adding permutation matrix P2 offers possibility of sparser L, U

▶ hence, less storage and cheaper factor and solve steps

▶ P1 and P2 chosen (heuristically) to yield sparse L, U

▶ choice of P1 and P2 depends on sparsity pattern and values of A

▶ cost is usually much less than (2/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern

▶ often practical to solve very large sparse systems of equations

Convex Optimization Boyd and Vandenberghe B.12

Cholesky factorization

▶ every positive definite A can be factored as A = LLT

▶ L is lower triangular with positive diagonal entries

▶ Cholesjy factorization cost: (1/3)n3 flops

Solving linear equations by Cholesky factorization.
given a set of linear equations Ax = b, with A ∈ Sn

++.
1. Cholesky factorization. Factor A as A = LLT ((1/3)n3 flops).
2. Forward substitution. Solve Lz1 = b (n2 flops).
3. Backward substitution. Solve LTx = z1 (n2 flops).

▶ total cost: (1/3)n3 + 2n2 ≈ (1/3)n3 for large n

Convex Optimization Boyd and Vandenberghe B.13

Sparse Cholesky factorization

▶ for sparse positive define A, factor as A = PLLTPT

▶ adding permutation matrix P offers possibility of sparser L

▶ same as
– permuting rows and columns of A to get Ã = PTAP
– then finding Cholesky factorization of Ã

▶ P chosen (heuristically) to yield sparse L

▶ choice of P only depends on sparsity pattern of A (unlike sparse LU)

▶ cost is usually much less than (1/3)n3; exact value depends in a complicated way on n,
number of zeros in A, sparsity pattern

Convex Optimization Boyd and Vandenberghe B.14

Example

▶ sparse A with upper arrow sparsity pattern

A =


∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

 L =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


L is full, with O(n2) nonzeros; solve cost is O(n2)

▶ reverse order of entries (i.e., permute) to get lower arrow sparsity pattern

Ã =


∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗

 L =


∗

∗
∗

∗
∗ ∗ ∗ ∗ ∗


L is sparse with O(n) nonzeros; cost of solve is O(n)

Convex Optimization Boyd and Vandenberghe B.15

LDLT factorization

▶ every nonsingular symmetric matrix A can be factored as

A = PLDLTPT

with P a permutation matrix, L lower triangular, D block diagonal with 1 × 1 or 2 × 2 diagonal
blocks

▶ factorization cost: (1/3)n3

▶ cost of solving linear equations with symmetric A by LDLT factorization:
(1/3)n3 + 2n2 ≈ (1/3)n3 for large n

▶ for sparse A, can choose P to yield sparse L; cost ≪ (1/3)n3

Convex Optimization Boyd and Vandenberghe B.16

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Convex Optimization Boyd and Vandenberghe B.17

Equations with structured sub-blocks

▶ express Ax = b in blocks as [
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
with x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

▶ assuming A11 is nonsingular, can eliminate x1 as

x1 = A−1
11 (b1 − A12x2)

▶ to compute x2, solve
(A22 − A21A−1

11 A12)x2 = b2 − A21A−1
11 b1

▶ S = A22 − A21A−1
11 A12 is the Shur complement

Convex Optimization Boyd and Vandenberghe B.18

Bock elimination method

Solving linear equations by block elimination.
given a nonsingular set of linear equations with A11 nonsingular.

1. Form A−1
11 A12 and A−1

11 b1.
2. Form S = A22 − A21A−1

11 A12 and b̃ = b2 − A21A−1
11 b1.

3. Determine x2 by solving Sx2 = b̃.
4. Determine x1 by solving A11x1 = b1 − A12x2.

dominant terms in flop count
▶ step 1: f + n2s (f is cost of factoring A11; s is cost of solve step)
▶ step 2: 2n2

2n1 (cost dominated by product of A21 and A−1
11 A12)

▶ step 3: (2/3)n3
2

total: f + n2s + 2n2
2n1 + (2/3)n3

2

Convex Optimization Boyd and Vandenberghe B.19

Examples

▶ for general A11, f = (2/3)n3
1, s = 2n2

1

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3) (n1 + n2)3

so, no gain over standard method

▶ block elimination is useful for structured A11 (f ≪ n3
1)

▶ for example, A11 diagonal (f = 0, s = n1): #flops ≈ 2n2
2n1 + (2/3)n3

2

Convex Optimization Boyd and Vandenberghe B.20

Structured plus low rank matrices

▶ we wish to solve (A + BC)x = b, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n

▶ assume A has structure (i.e., Ax = b easy to solve)
▶ first uneliminate to write as block equations with new variable y[

A B
C −I

] [
x
y

]
=

[
b
0

]
▶ now apply block elimination: solve

(I + CA−1B)y = CA−1b,

then solve Ax = b − By
▶ this proves the matrix inversion lemma: if A and A + BC are nonsingular,

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

Convex Optimization Boyd and Vandenberghe B.21

Example: Solving diagonal plus low rank equations

▶ with A diagonal, p ≪ n, A + BC is called diagonal plus low rank

▶ for covariance matrices, called a factor model

▶ method 1: form D = A + BC, then solve Dx = b
– storage n2

– solve cost (2/3)n3 + 2pn2 (cubic in n)

▶ method 2: solve (I + CA−1B)y = CA−1b, then compute x = A−1b − A−1By
– storage O(np)
– solve cost 2p2n + (2/3)p3 (linear in n)

Convex Optimization Boyd and Vandenberghe B.22

	Numerical linear algebra background
	Flop counts and BLAS
	Solving systems of linear equations
	Block elimination

