Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

B. Numerical linear algebra background

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Flop count

- ▶ **flop** (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm
 - express number of flops as a (polynomial) function of the problem dimensions
 - simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers, but useful as a rough estimate of complexity

Basic linear algebra subroutines (BLAS)

vector-vector operations $(x, y \in \mathbf{R}^n)$ (BLAS level 1)

- ▶ inner product x^Ty : 2n 1 flops (≈ 2n, O(n))
- ▶ sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbb{R}^{m \times n}$ (BLAS level 2)

- ▶ m(2n-1) flops (≈ 2mn)
- \triangleright 2N if A is sparse with N nonzero elements
- ▶ 2p(n+m) if A is given as $A = UV^T$, $U \in \mathbf{R}^{m \times p}$, $V \in \mathbf{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ (BLAS level 3)

- ▶ mp(2n-1) flops (≈ 2mnp)
- less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2 n$ if m=p and C symmetric

BLAS on modern computers

- ▶ there are good implementations of BLAS and variants (*e.g.*, for sparse matrices)
- ► CPU single thread speeds typically 1–10 Gflops/s (10⁹ flops/sec)
- ► CPU multi threaded speeds typically 10–100 Gflops/s
- ► GPU speeds typically 100 Gflops/s–1 Tflops/s (10¹² flops/sec)

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Complexity of solving linear equations

- ▶ $A \in \mathbf{R}^{n \times n}$ is invertible, $b \in \mathbf{R}^n$
- ▶ solution of Ax = b is $x = A^{-1}b$
- ▶ solving Ax = b, *i.e.*, computing $x = A^{-1}b$
 - almost never done by computing A^{-1} , then multiplying by b
 - for general methods, $O(n^3)$
 - (much) less if *A* is structured (banded, sparse, Toeplitz, ...)
 - e.g., for A with half-bandwidth k ($A_{ij} = 0$ for |i j| > k, $O(k^2n)$
- ightharpoonup it's super useful to recognize matrix structure that can be exploited in solving Ax = b

Linear equations that are easy to solve

- diagonal matrices: n flops; $x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$
- lower triangular: n^2 flops via forward substitution

$$x_{1} := b_{1}/a_{11}$$

$$x_{2} := (b_{2} - a_{21}x_{1})/a_{22}$$

$$x_{3} := (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

$$\vdots$$

$$x_{n} := (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

ightharpoonup upper triangular: n^2 flops via **backward substitution**

Linear equations that are easy to solve

- orthogonal matrices $(A^{-1} = A^T)$:
 - $-2n^2$ flops to compute $x = A^T b$ for general A
 - less with structure, e.g., if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute $x = A^Tb = b 2(u^Tb)u$ in 4n flops
- **permutation matrices:** for $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ a permutation of $(1, 2, \dots, n)$

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

- interpretation: $Ax = (x_{\pi_1}, \dots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops
- example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Factor-solve method for solving Ax = b

▶ factor *A* as a product of simple matrices (usually 2–5):

$$A = A_1 A_2 \cdots A_k$$

- $ightharpoonup e.g., A_i$ diagonal, upper or lower triangular, orthogonal, permutation, ...
- compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1}A_1^{-1}b$ by solving k 'easy' systems of equations

$$A_1x_1 = b,$$
 $A_2x_2 = x_1,$... $A_kx = x_{k-1}$

cost of factorization step usually dominates cost of solve step

Solving equations with multiple righthand sides

we wish to solve

$$Ax_1 = b_1,$$
 $Ax_2 = b_2,$... $Ax_m = b_m$

- cost: one factorization plus m solves
- called factorization caching
- when factorization cost dominates solve cost, we can solve a modest number of equations at the same cost as one (!!)

LU factorization

- every nonsingular matrix A can be factored as A = PLU with P a permutation, L lower triangular, U upper triangular
- factorization cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

- 1. LU factorization. Factor A as $A = PLU((2/3)n^3)$ flops).
- 2. *Permutation.* Solve $Pz_1 = b$ (0 flops).
- 3. Forward substitution. Solve $Lz_2 = z_1$ (n^2 flops).
- 4. Backward substitution. Solve $Ux = z_2$ (n^2 flops).
- ► total cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n

Sparse LU factorization

- for *A* sparse and invertible, factor as $A = P_1LUP_2$
- ightharpoonup adding permutation matrix P_2 offers possibility of sparser L, U
- hence, less storage and cheaper factor and solve steps
- $ightharpoonup P_1$ and P_2 chosen (heuristically) to yield sparse L, U
- choice of P₁ and P₂ depends on sparsity pattern and values of A
- cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern
- often practical to solve very large sparse systems of equations

Cholesky factorization

- every positive definite A can be factored as $A = LL^T$
- L is lower triangular with positive diagonal entries
- ► Cholesjy factorization cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with $A \in \mathbf{S}_{++}^n$.

- 1. Cholesky factorization. Factor A as $A = LL^T$ ((1/3) n^3 flops).
- 2. Forward substitution. Solve $Lz_1 = b$ (n^2 flops).
- 3. Backward substitution. Solve $L^T x = z_1$ (n^2 flops).
- ► total cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n

Sparse Cholesky factorization

- for sparse positive define A, factor as $A = PLL^TP^T$
- adding permutation matrix P offers possibility of sparser L
- same as
 - permuting rows and columns of A to get $\tilde{A} = P^T A P$
 - then finding Cholesky factorization of $ilde{A}$
- P chosen (heuristically) to yield sparse L
- choice of P only depends on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

Example

sparse A with upper arrow sparsity pattern

L is full, with $O(n^2)$ nonzeros; solve cost is $O(n^2)$

reverse order of entries (i.e., permute) to get lower arrow sparsity pattern

L is sparse with O(n) nonzeros; cost of solve is O(n)

LDL^T factorization

ightharpoonup every nonsingular symmetric matrix A can be factored as

$$A = PLDL^T P^T$$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

- factorization cost: $(1/3)n^3$
- cost of solving linear equations with symmetric A by LDL^T factorization: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
- ▶ for sparse *A*, can choose *P* to yield sparse *L*; cost $\ll (1/3)n^3$

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Equations with structured sub-blocks

ightharpoonup express Ax = b in blocks as

$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$$

with $x_1 \in \mathbf{R}^{n_1}$, $x_2 \in \mathbf{R}^{n_2}$; blocks $A_{ii} \in \mathbf{R}^{n_i \times n_j}$

ightharpoonup assuming A_{11} is nonsingular, can eliminate x_1 as

$$x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$$

ightharpoonup to compute x_2 , solve

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

Arr $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ is the **Shur complement**

Bock elimination method

Solving linear equations by block elimination.

given a nonsingular set of linear equations with A_{11} nonsingular.

- 1. Form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$.
- 2. Form $S = A_{22} A_{21}A_{11}^{-1}A_{12}$ and $\tilde{b} = b_2 A_{21}A_{11}^{-1}b_1$.
- 3. Determine x_2 by solving $Sx_2 = \tilde{b}$.
- 4. Determine x_1 by solving $A_{11}x_1 = b_1 A_{12}x_2$.

dominant terms in flop count

- ▶ step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- ▶ step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total:
$$f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$$

Examples

• for general A_{11} , $f = (2/3)n_1^3$, $s = 2n_1^2$

#flops =
$$(2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

so, no gain over standard method

- block elimination is useful for structured A_{11} $(f \ll n_1^3)$
- ► for example, A_{11} diagonal (f = 0, $s = n_1$): #flops $\approx 2n_2^2n_1 + (2/3)n_2^3$

Structured plus low rank matrices

- we wish to solve $(A + BC)x = b, A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times p}, C \in \mathbf{R}^{p \times n}$
- ▶ assume *A* has structure (*i.e.*, Ax = b easy to solve)
- first **uneliminate** to write as block equations with new variable y

$$\left[\begin{array}{cc} A & B \\ C & -I \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} b \\ 0 \end{array}\right]$$

now apply block elimination: solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$

then solve Ax = b - By

▶ this proves the **matrix inversion lemma**: if A and A + BC are nonsingular,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

Example: Solving diagonal plus low rank equations

- with A diagonal, $p \ll n$, A + BC is called **diagonal plus low rank**
- for covariance matrices, called a factor model
- ▶ method 1: form D = A + BC, then solve Dx = b
 - storage n^2
 - solve cost $(2/3)n^3 + 2pn^2$ (cubic in n)
- ► method 2: solve $(I + CA^{-1}B)y = CA^{-1}b$, then compute $x = A^{-1}b A^{-1}By$
 - storage O(np)
 - solve cost $2p^2n + (2/3)p^3$ (linear in n)