Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel
4. Convex optimization problems
Outline

Optimization problems

Some standard convex problems
Transforming problems
Disciplined convex programming
Geometric programming
Quasiconvex optimization
Multicriterion optimization
Optimization problem in standard form

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- \(x \in \mathbb{R}^n \) is the optimization variable
- \(f_0 : \mathbb{R}^n \to \mathbb{R} \) is the objective or cost function
- \(f_i : \mathbb{R}^n \to \mathbb{R}, \quad i = 1, \ldots, m \), are the inequality constraint functions
- \(h_i : \mathbb{R}^n \to \mathbb{R} \) are the equality constraint functions
Feasible and optimal points

- $x \in \mathbb{R}^n$ is **feasible** if $x \in \text{dom} f_0$ and it satisfies the constraints

- **optimal value** is $p^* = \inf \{ f_0(x) \mid f_i(x) \leq 0, \ i = 1, \ldots, m, \ h_i(x) = 0, \ i = 1, \ldots, p \}$

- $p^* = \infty$ if problem is infeasible

- $p^* = -\infty$ if problem is **unbounded below**

- a feasible x is **optimal** if $f_0(x) = p^*$

- X_{opt} is the set of optimal points
Locally optimal points

x is **locally optimal** if there is an $R > 0$ such that x is optimal for

\[
\begin{align*}
\text{minimize (over } z \text{)} & \quad f_0(z) \\
\text{subject to} & \quad f_i(z) \leq 0, \quad i = 1, \ldots, m, \quad h_i(z) = 0, \quad i = 1, \ldots, p \\
& \quad ||z - x||_2 \leq R
\end{align*}
\]
Examples

examples with $n = 1$, $m = p = 0$

- $f_0(x) = 1/x$, $\text{dom} f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = - \log x$, $\text{dom} f_0 = \mathbb{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $\text{dom} f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal
- $f_0(x) = x^3 - 3x$: $p^* = -\infty$, $x = 1$ is locally optimal

![Graphs of functions $f_0(x)$](image-url)
Implicit and explicit constraints

standard form optimization problem has **implicit constraint**

\[x \in \mathcal{D} = \bigcap_{i=0}^{m} \text{dom} f_i \cap \bigcap_{i=1}^{p} \text{dom} h_i, \]

- we call \(\mathcal{D} \) the **domain** of the problem
- the constraints \(f_i(x) \leq 0, h_i(x) = 0 \) are the **explicit constraints**
- a problem is **unconstrained** if it has no explicit constraints \((m = p = 0) \)

example:

\[\text{minimize } f_0(x) = -\sum_{i=1}^{k} \log(b_i - a_i^T x) \]

is an unconstrained problem with implicit constraints \(a_i^T x < b_i \)
Feasibility problem

find x
subject to $f_i(x) \leq 0, \quad i = 1, \ldots, m$
 $h_i(x) = 0, \quad i = 1, \ldots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to $f_i(x) \leq 0, \quad i = 1, \ldots, m$
 $h_i(x) = 0, \quad i = 1, \ldots, p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible
Standard form convex optimization problem

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)
\(a_i^T x = b_i, \quad i = 1, \ldots, p \)

- objective and inequality constraints \(f_0, f_1, \ldots, f_m \) are convex
- equality constraints are affine, often written as \(Ax = b \)
- feasible and optimal sets of a convex optimization problem are convex

- problem is **quasiconvex** if \(f_0 \) is quasiconvex, \(f_1, \ldots, f_m \) are convex, \(h_1, \ldots, h_p \) are affine
Example

▶ standard form problem

\[\begin{align*}
\text{minimize} & \quad f_0(x) = x_1^2 + x_2^2 \\
\text{subject to} & \quad f_1(x) = x_1/(1 + x_2^2) \leq 0 \\
& \quad h_1(x) = (x_1 + x_2)^2 = 0
\end{align*} \]

▶ \(f_0\) is convex; feasible set \(\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}\) is convex

▶ not a convex problem (by our definition) since \(f_1\) is not convex, \(h_1\) is not affine

▶ equivalent (but not identical) to the convex problem

\[\begin{align*}
\text{minimize} & \quad x_1^2 + x_2^2 \\
\text{subject to} & \quad x_1 \leq 0 \\
& \quad x_1 + x_2 = 0
\end{align*} \]
Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:

▶ suppose \(x \) is locally optimal, but there exists a feasible \(y \) with \(f_0(y) < f_0(x) \)

▶ \(x \) locally optimal means there is an \(R > 0 \) such that

\[
\text{\(z \) feasible, \(\|z - x\|_2 \leq R \) } \implies \ f_0(z) \geq f_0(x)
\]

▶ consider \(z = \theta y + (1 - \theta)x \) with \(\theta = R/(2\|y - x\|_2) \)

▶ \(\|y - x\|_2 > R \), so \(0 < \theta < 1/2 \)

▶ \(z \) is a convex combination of two feasible points, hence also feasible

▶ \(\|z - x\|_2 = R/2 \) and \(f_0(z) \leq \theta f_0(y) + (1 - \theta)f_0(x) < f_0(x) \), which contradicts our assumption that \(x \) is locally optimal
Optimality criterion for differentiable f_0

- x is optimal for a convex problem if and only if it is feasible and

$$\nabla f_0(x)^T (y - x) \geq 0 \text{ for all feasible } y$$

- if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x
Examples

▶ unconstrained problem: \(x \) minimizes \(f_0(x) \) if and only if \(\nabla f_0(x) = 0 \)

▶ equality constrained problem: \(x \) minimizes \(f_0(x) \) subject to \(Ax = b \) if and only if there exists a \(\nu \) such that

\[
Ax = b, \quad \nabla f_0(x) + A^T \nu = 0
\]

▶ minimization over nonnegative orthant: \(x \) minimizes \(f_0(x) \) over \(\mathbb{R}_+^n \) if and only if

\[
x \geq 0, \quad \begin{cases}
\nabla f_0(x)_i \geq 0 & x_i = 0 \\
\nabla f_0(x)_i = 0 & x_i > 0
\end{cases}
\]
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Linear program (LP)

\[
\begin{align*}
\text{minimize} \quad & c^T x + d \\
\text{subject to} \quad & Gx \leq h \\
& Ax = b
\end{align*}
\]

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Convex Optimization Boyd and Vandenberghe 4.14
Example: Diet problem

- choose nonnegative quantities \(x_1, \ldots, x_n \) of \(n \) foods
- one unit of food \(j \) costs \(c_j \) and contains amount \(A_{ij} \) of nutrient \(i \)
- healthy diet requires nutrient \(i \) in quantity at least \(b_i \)
- to find cheapest healthy diet, solve

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \succeq b, \quad x \succeq 0
\end{align*}
\]

- express in standard LP form as

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \begin{bmatrix} -A \\ -I \end{bmatrix} x \leq \begin{bmatrix} -b \\ 0 \end{bmatrix}
\end{align*}
\]
Example: Piecewise-linear minimization

- minimize convex piecewise-linear function $f_0(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i)$, $x \in \mathbb{R}^n$

- equivalent to LP

 \[
 \begin{align*}
 \text{minimize} & \quad t \\
 \text{subject to} & \quad a_i^T x + b_i \leq t, & i = 1, \ldots, m
 \end{align*}
 \]

 with variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$

- constraints describe $\text{epi} f_0$
Example: Chebyshev center of a polyhedron

The Chebyshev center of $\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ i = 1, \ldots, m\}$ is the center of the largest inscribed ball $\mathcal{B} = \{x_c + u \mid \|u\|_2 \leq r\}$.

- $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if
 \[
 \sup \{a_i^T (x_c + u) \mid \|u\|_2 \leq r\} = a_i^T x_c + r \|a_i\|_2 \leq b_i
 \]
- Hence, x_c, r can be determined by solving LP with variables x_c, r

\[
\begin{align*}
\text{maximize} & \quad r \\
\text{subject to} & \quad a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
Quadratic program (QP)

minimize \((1/2)x^T Px + q^T x + r\)
subject to \(Gx \leq h\)
\(Ax = b\)

- \(P \in S^n_+\), so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Convex Optimization Boyd and Vandenberghe 4.18
Example: Least squares

- **least squares** problem: minimize $\|Ax - b\|_2^2$
- analytical solution $x^* = A^\dagger b$ (A^\dagger is pseudo-inverse)
- can add linear constraints, *e.g.*,
 - $x \geq 0$ *(nonnegative least squares)*
 - $x_1 \leq x_2 \leq \cdots \leq x_n$ *(isotonic regression)*
Example: Linear program with random cost

- LP with random cost c, with mean \bar{c} and covariance Σ
- hence, LP objective $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- **risk-averse** problem:

 $\begin{align*}
 \text{minimize} & \quad E \ c^T x + \gamma \ \text{var}(c^T x) \\
 \text{subject to} & \quad Gx \leq h, \quad Ax = b
 \end{align*}$

- $\gamma > 0$ is **risk aversion parameter**; controls the trade-off between expected cost and variance (risk)

- express as QP

 $\begin{align*}
 \text{minimize} & \quad \bar{c}^T x + \gamma x^T \Sigma x \\
 \text{subject to} & \quad Gx \leq h, \quad Ax = b
 \end{align*}$
Quadratically constrained quadratic program (QCQP)

\[
\begin{align*}
\text{minimize} & \quad (1/2)x^T P_0 x + q_0^T x + r_0 \\
\text{subject to} & \quad (1/2)x^T P_i x + q_i^T x + r_i \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(P_i \in S^n_+ \): objective and constraints are convex quadratic
- if \(P_1, \ldots, P_m \in S^n_{++} \), feasible region is intersection of \(m \) ellipsoids and an affine set
Second-order cone programming

minimize $f^T x$
subject to $\|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \ldots, m$
$Fx = g$

$(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$
▶ inequalities are called second-order cone (SOC) constraints:

$(A_i x + b_i, c_i^T x + d_i) \in$ second-order cone in \mathbb{R}^{n_i+1}

▶ for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
▶ more general than QCQP and LP
Example: Robust linear programming

suppose constraint vectors a_i are uncertain in the LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, m,
\end{align*}
\]

two common approaches to handling uncertainty

- **deterministic worst-case**: constraints must hold for all $a_i \in \mathcal{E}_i$ (uncertainty ellipsoids)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i \text{ for all } a_i \in \mathcal{E}_i, \quad i = 1, \ldots, m,
\end{align*}
\]

- **stochastic**: a_i is random variable; constraints must hold with probability η

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \text{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \ldots, m
\end{align*}
\]
Deterministic worst-case approach

- uncertainty ellipsoids are $\mathcal{E}_i = \{\bar{a}_i + P_iu \mid \|u\|_2 \leq 1\}$, $(\bar{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n})$
- center of \mathcal{E}_i is \bar{a}_i; semi-axes determined by singular values/vectors of P_i
- robust LP

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \ldots, m
\end{align*}
\]

- equivalent to SOCP

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

(follows from $\sup_{\|u\|_2 \leq 1}(\bar{a}_i + P_iu)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)
Stochastic approach

• assume \(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i) \)

• \(a_i^T x \sim \mathcal{N}(\bar{a}_i^T x, x^T \Sigma_i x) \), so

\[
\text{prob}(a_i^T x \leq b_i) = \Phi \left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2} \right)
\]

where \(\Phi(u) = (1/\sqrt{2\pi}) \int_{-\infty}^{u} e^{-t^2/2} dt \) is \(\mathcal{N}(0, 1) \) CDF

• \(\text{prob}(a_i^T x \leq b_i) \geq \eta \) can be expressed as \(\bar{a}_i^T x + \Phi^{-1}(\eta)\|\Sigma_i^{1/2} x\|_2 \leq b_i \)

• for \(\eta \geq 1/2 \), robust LP equivalent to SOCP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad \bar{a}_i^T x + \Phi^{-1}(\eta)\|\Sigma_i^{1/2} x\|_2 \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]
Conic form problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Fx + g \preceq_K 0 \\
& \quad Ax = b
\end{align*}
\]

- constraint \(Fx + g \preceq_K 0 \) involves a generalized inequality with respect to a proper cone \(K \)
- linear programming is a conic form problem with \(K = \mathbb{R}_+^m \)
- as with standard convex problem
 - feasible and optimal sets are convex
 - any local optimum is global

Convex Optimization Boyd and Vandenberghe 4.26
Semidefinite program (SDP)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x_1 F_1 + x_2 F_2 + \cdots + x_n F_n + G \leq 0 \\
& \quad Ax = b
\end{align*}
\]

with \(F_i, G \in S^k \)

- inequality constraint is called **linear matrix inequality** (LMI)
- includes problems with multiple LMI constraints: for example,

\[
x_1 \hat{F}_1 + \cdots + x_n \hat{F}_n + \hat{G} \leq 0, \quad x_1 \tilde{F}_1 + \cdots + x_n \tilde{F}_n + \tilde{G} \leq 0
\]

is equivalent to single LMI

\[
x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \cdots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0
\]
Example: Matrix norm minimization

\[
\begin{align*}
\text{minimize} \quad & \|A(x)\|_2 = \left(\lambda_{\text{max}}(A(x)^T A(x))\right)^{1/2} \\
\text{where} \quad & A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n \text{ (with given } A_i \in \mathbb{R}^{p \times q})
\end{align*}
\]

equivalent SDP

\[
\begin{align*}
\text{minimize} \quad & t \\
\text{subject to} \quad & \begin{bmatrix} tl & A(x) \\ A(x)^T & tl \end{bmatrix} \succeq 0
\end{align*}
\]

\begin{itemize}
\item variables \(x \in \mathbb{R}^n, \ t \in \mathbb{R} \)
\item constraint follows from
\end{itemize}

\[
\begin{align*}
\|A\|_2 \leq t & \iff A^T A \leq t^2 I, \quad t \geq 0 \\
& \iff \begin{bmatrix} tl & A \\ A^T & tl \end{bmatrix} \succeq 0
\end{align*}
\]
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Change of variables

- $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is one-to-one with $\phi(\text{dom } \phi) \supseteq D$
- consider (possibly non-convex) problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- change variables to z with $x = \phi(z)$
- can solve equivalent problem

\[
\begin{align*}
\text{minimize} & \quad \tilde{f}_0(z) \\
\text{subject to} & \quad \tilde{f}_i(z) \leq 0, \quad i = 1, \ldots, m \\
& \quad \tilde{h}_i(z) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

where $\tilde{f}_i(z) = f_i(\phi(z))$ and $\tilde{h}_i(z) = h_i(\phi(z))$
- recover original optimal point as $x^* = \phi(z^*)$
Example

▶ **non-convex** problem

\[
\begin{align*}
\text{minimize} & \quad x_1/x_2 + x_3/x_1 \\
\text{subject to} & \quad x_2/x_3 + x_1 \leq 1
\end{align*}
\]

with implicit constraint \(x > 0 \)

▶ change variables using \(x = \phi(z) = \exp z \) to get

\[
\begin{align*}
\text{minimize} & \quad \exp(z_1 - z_2) + \exp(z_3 - z_1) \\
\text{subject to} & \quad \exp(z_2 - z_3) + \exp(z_1) \leq 1
\end{align*}
\]

which is **convex**
Transformation of objective and constraint functions

suppose

- ϕ_0 is monotone increasing
- $\psi_i(u) \leq 0$ if and only if $u \leq 0$, $i = 1, \ldots, m$
- $\varphi_i(u) = 0$ if and only if $u = 0$, $i = 1, \ldots, p$

standard form optimization problem is equivalent to

$$\begin{align*}
\text{minimize} & \quad \phi_0(f_0(x)) \\
\text{subject to} & \quad \psi_i(f_i(x)) \leq 0, \quad i = 1, \ldots, m \\
& \quad \varphi_i(h_i(x)) = 0, \quad i = 1, \ldots, p
\end{align*}$$

example: minimizing $\|Ax - b\|$ is equivalent to minimizing $\|Ax - b\|^2$
Converting maximization to minimization

- suppose ϕ_0 is monotone decreasing
- the maximization problem

\[
\begin{align*}
\text{maximize} \quad & f_0(x) \\
\text{subject to} \quad & f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

is equivalent to the minimization problem

\[
\begin{align*}
\text{minimize} \quad & \phi_0(f_0(x)) \\
\text{subject to} \quad & f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- examples:
 - $\phi_0(u) = -u$ transforms maximizing a concave function to minimizing a convex function
 - $\phi_0(u) = 1/u$ transforms maximizing a concave positive function to minimizing a convex function
Eliminating equality constraints

\[
\begin{align*}
& \text{minimize} \quad f_0(x) \\
& \text{subject to} \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

is equivalent to

\[
\begin{align*}
& \text{minimize (over } z) \quad f_0(Fz + x_0) \\
& \text{subject to} \quad f_i(Fz + x_0) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(F \) and \(x_0 \) are such that \(Ax = b \iff x = Fz + x_0 \) for some \(z \).
Introducing equality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(A_0x + b_0) \\
\text{subject to} & \quad f_i(A_ix + b_i) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, y_i \text{)} & \quad f_0(y_0) \\
\text{subject to} & \quad f_i(y_i) \leq 0, \quad i = 1, \ldots, m \\
y_i = A_ix + b_i, & \quad i = 0, 1, \ldots, m
\end{align*}
\]
Introducing slack variables for linear inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize (over } x, s) & \quad f_0(x) \\
\text{subject to} & \quad a_i^T x + s_i = b_i, \quad i = 1, \ldots, m \\
& \quad s_i \geq 0, \quad i = 1, \ldots m
\end{align*}
\]
standard form convex problem is equivalent to

minimize (over x, t) t
subject to

$f_0(x) - t \leq 0$
$f_i(x) \leq 0, \quad i = 1, \ldots, m$
$Ax = b$
Minimizing over some variables

\[
\begin{align*}
\text{minimize} & \quad f_0(x_1, x_2) \\
\text{subject to} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

is equivalent to

\[
\begin{align*}
\text{minimize} & \quad \tilde{f}_0(x_1) \\
\text{subject to} & \quad f_i(x_1) \leq 0, \quad i = 1, \ldots, m
\end{align*}
\]

where \(\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2) \)
LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$
subject to $Ax \leq b$

SDP: minimize $c^T x$
subject to $\text{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequalities \leq in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize $f^T x$
subject to $\|A_i x + b_i\|_2 \leq c_i^T x + d_i$, $i = 1, \ldots, m$

SDP: minimize $f^T x$
subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0$, $i = 1, \ldots, m$
Convex relaxation

- **start with nonconvex problem**: minimize $h(x)$ subject to $x \in C$
- **find convex function** $\hat{h}(x)$ with $\hat{h}(x) \leq h(x)$ for all $x \in \text{dom } h$ (i.e., a pointwise lower bound on h)
- **find set** $\hat{C} \supseteq C$ (e.g., $\hat{C} = \text{conv } C$) described by linear equalities and convex inequalities
 \[
 \hat{C} = \{x \mid f_i(x) \leq 0, \ i = 1, \ldots, m, \ f_m(x) \leq 0, \ Ax = b\}
 \]
- **convex problem**

 minimize $\hat{h}(x)$
 subject to $f_i(x) \leq 0, \ i = 1, \ldots, m, \ Ax = b$

is a **convex relaxation** of the original problem

- **optimal value of relaxation** is lower bound on optimal value of original problem
Example: Boolean LP

- mixed integer linear program (MILP):

\[
\begin{align*}
\text{minimize} \quad & c^T(x, z) \\
\text{subject to} \quad & F(x, z) \leq g, \quad A(x, z) = b, \quad z \in \{0, 1\}^q
\end{align*}
\]

with variables \(x \in \mathbb{R}^n, z \in \mathbb{R}^q\)

- \(z_i\) are called **Boolean variables**
- this problem is in general hard to solve

- **LP relaxation**: replace \(z \in \{0, 1\}^q\) with \(z \in [0, 1]^q\)
- optimal value of relaxation LP is lower bound on MILP
- can use as heuristic for approximately solving MILP, e.g., **relax and round**
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Disciplined convex program

- specify objective as
 - minimize \{scalar convex expression\}, or
 - maximize \{scalar concave expression\}

- specify constraints as
 - \{convex expression\} <= \{concave expression\} or
 - \{concave expression\} >= \{convex expression\} or
 - \{affine expression\} == \{affine expression\}

- curvature of expressions are DCP certified, i.e., follow composition rule

- DCP-compliant problems can be automatically transformed to standard forms, then solved
CVXPY example

math:

minimize \[\|x\|_1\]
subject to
\[Ax = b\]
\[\|x\|_\infty \leq 1\]

- \(x\) is the variable
- \(A, b\) are given

CVXPY code:

```python
import cvxpy as cp

A, b = ...

x = cp.Variable(n)

obj = cp.norm(x, 1)

constr = [
    A @ x == b,
    cp.norm(x, 'inf') <= 1,
]

prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```
How CVXPY works

- starts with your optimization problem \mathcal{P}_1
- finds a sequence of equivalent problems $\mathcal{P}_2, \ldots, \mathcal{P}_N$
- final problem \mathcal{P}_N matches a standard form (e.g., LP, QP, SOCP, or SDP)
- calls a specialized solver on \mathcal{P}_N
- retrieves solution of original problem by reversing the transformations

$$
\mathcal{P}_1 \iff \mathcal{P}_2 \iff \cdots \iff \mathcal{P}_{N-1} \iff \mathcal{P}_N
$$

Convex Optimization

Boyd and Vandenberghe

4.45
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Geometric programming

- **monomial function**:
 \[f(x) = c x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, \quad \text{dom} f = \mathbb{R}^n_+ \]
 with \(c > 0 \); exponent \(a_i \) can be any real number

- **posynomial function**: sum of monomials
 \[f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom} f = \mathbb{R}^n_+ \]

- **geometric program (GP)**

 minimize \(f_0(x) \)
 subject to
 \[f_i(x) \leq 1, \quad i = 1, \ldots, m \]
 \[h_i(x) = 1, \quad i = 1, \ldots, p \]

 with \(f_i \) posynomial, \(h_i \) monomial
Geometric program in convex form

- change variables to $y_i = \log x_i$, and take logarithm of cost, constraints
- monomial $f(x) = c x_1^{a_1} \cdots x_n^{a_n}$ transforms to
 \[
 \log f(e^{y_1}, \ldots, e^{y_n}) = a^T y + b \quad (b = \log c)
 \]
- posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to
 \[
 \log f(e^{y_1}, \ldots, e^{y_n}) = \log \left(\sum_{k=1}^{K} e^{a_{k}^T y + b_k} \right) \quad (b_k = \log c_k)
 \]
- geometric program transforms to convex problem

 minimize \quad \log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)

 subject to \quad \log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \leq 0, \quad i = 1, \ldots, m

 \quad Gy + d = 0
Examples: Frobenius norm diagonal scaling

- we seek diagonal matrix $D = \text{diag}(d)$, $d > 0$, to minimize $\|DMD^{-1}\|_F^2$.
- express as

$$\|DMD^{-1}\|_F^2 = \sum_{i,j=1}^{n} \left(DMD^{-1}
ight)_{ij}^2 = \sum_{i,j=1}^{n} M_{ij}^2 d_i^2 / d_j^2$$

- a posynomial in d (with exponents 0, 2, and -2)
- in convex form, with $y = \log d$,

$$\log \|DMD^{-1}\|_F^2 = \log \left(\sum_{i,j=1}^{n} \exp \left(2(y_i - y_j + \log |M_{ij}|) \right) \right)$$
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Quasiconvex optimization

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

with \(f_0 : \mathbb{R}^n \to \mathbb{R} \) quasiconvex, \(f_1, \ldots, f_m \) convex

can have locally optimal points that are not (globally) optimal
Linear-fractional program

- linear-fractional program

 \[
 \begin{align*}
 \text{minimize} & \quad (c^T x + d)/(e^T x + f) \\
 \text{subject to} & \quad Gx \leq h, \quad Ax = b
 \end{align*}
\]

 with variable \(x \) and implicit constraint \(e^T x + f > 0 \)

- equivalent to the LP (with variables \(y, z \))

 \[
 \begin{align*}
 \text{minimize} & \quad c^T y + dz \\
 \text{subject to} & \quad Gy \leq hz, \quad Ay = bz \\
 & \quad e^T y + fz = 1, \quad z \geq 0
 \end{align*}
\]

- recover \(x^* = y^*/z^* \)
Von Neumann model of a growing economy

- $x, x^+ \in \mathbb{R}^n_{++}$: activity levels of n economic sectors, in current and next period
- $(Ax)_i$: amount of good i produced in current period
- $(Bx^+)_i$: amount of good i consumed in next period
- $Bx^+ \leq Ax$: goods consumed next period no more than produced this period
- x^+_i / x_i: growth rate of sector i
- allocate activity to maximize growth rate of slowest growing sector

\[
\max_{x, x^+} \min_{i=1, \ldots, n} \frac{x^+_i}{x_i} \quad \text{subject to} \quad x^+ \geq 0, \quad Bx^+ \leq Ax
\]

- a quasiconvex problem with variables x, x^+
Convex representation of sublevel sets

- if \(f_0 \) is quasiconvex, there exists a family of functions \(\phi_t \) such that:
 - \(\phi_t(x) \) is convex in \(x \) for fixed \(t \)
 - \(t \)-sublevel set of \(f_0 \) is 0-sublevel set of \(\phi_t \), i.e., \(f_0(x) \leq t \iff \phi_t(x) \leq 0 \)

example:

- \(f_0(x) = p(x)/q(x) \), with \(p \) convex and nonnegative, \(q \) concave and positive
- take \(\phi_t(x) = p(x) - tq(x) \): for \(t \geq 0 \),
 - \(\phi_t \) convex in \(x \)
 - \(p(x)/q(x) \leq t \) if and only if \(\phi_t(x) \leq 0 \)
Bisection method for quasiconvex optimization

- for fixed t, consider convex feasibility problem

\[
\phi_t(x) \leq 0, \quad f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b \tag{1}
\]

if feasible, we can conclude that $t \geq p^*$; if infeasible, $t \leq p^*$

- bisection method:

\begin{align*}
given & \quad l \leq p^*, \ u \geq p^*, \ \text{tolerance} \ \epsilon > 0. \\
repeat & \\
1. & \ t := (l + u)/2. \\
2. & \ \text{Solve the convex feasibility problem (1).} \\
3. & \
 \text{if (1) is feasible, } u := t; \ \text{else } l := t. \\
until & \ u - l \leq \epsilon.
\end{align*}

- requires exactly $\lceil \log_2((u - l)/\epsilon) \rceil$ iterations
Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization
Multicriterion optimization

- **multicriterion** or **multi-objective** problem:

 minimize \(f_0(x) = (F_1(x), \ldots, F_q(x)) \)

 subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b \)

- objective is the vector \(f_0(x) \in \mathbb{R}^q \)

- \(q \) different objectives \(F_1, \ldots, F_q \); roughly speaking we want all \(F_i \)’s to be small

- feasible \(x^* \) is **optimal** if \(y \) feasible \(\implies f_0(x^*) \leq f_0(y) \)

- this means that \(x^* \) simultaneously minimizes each \(F_i \); the objectives are **noncompeting**

- not surprisingly, this doesn’t happen very often
Pareto optimality

- feasible \(x \) **dominates** another feasible \(\tilde{x} \) if \(f_0(x) \leq f_0(\tilde{x}) \) and for at least one \(i \), \(F_i(x) < F_i(\tilde{x}) \)
- *i.e.*, \(x \) meets \(\tilde{x} \) on all objectives, and beats it on at least one

- feasible \(x^{\text{po}} \) is **Pareto optimal** if it is not dominated by any feasible point
- can be expressed as: \(y \) feasible, \(f_0(y) \leq f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y) \)

- there are typically many Pareto optimal points
- for \(q = 2 \), set of Pareto optimal objective values is the **optimal trade-off curve**
- for \(q = 3 \), set of Pareto optimal objective values is the **optimal trade-off surface**
Optimal and Pareto optimal points

set of achievable objective values $O = \{f_0(x) \mid x \text{ feasible}\}$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of O
Regularized least-squares

- minimize $(||Ax - b||^2_2, ||x||^2_2)$ (first objective is loss; second is regularization)
- example with $A \in \mathbb{R}^{100 \times 10}$; heavy line shows Pareto optimal points

\[
F_1(x) = ||Ax - b||^2_2
\]
\[
F_2(x) = ||x||^2_2
\]
Risk return trade-off in portfolio optimization

- variable $x \in \mathbb{R}^n$ is investment portfolio, with x_i fraction invested in asset i
- $\bar{p} \in \mathbb{R}^n$ is mean, Σ is covariance of asset returns
- portfolio return has mean $\bar{p}^T x$, variance $x^T \Sigma x$
- minimize $\left(-\bar{p}^T x, x^T \Sigma x \right)$, subject to $1^T x = 1, x \succeq 0$
- Pareto optimal portfolios trace out optimal risk-return curve
Example

Convex Optimization

Boyd and Vandenberghe

4.62
Scalarization

- **scalarization** combines the multiple objectives into one (scalar) objective
- a standard method for finding Pareto optimal points
- choose $\lambda > 0$ and solve scalar problem

\[
\begin{align*}
\text{minimize} \quad & \lambda^T f_0(x) = \lambda_1 F_1(x) + \cdots + \lambda_q F_q(x) \\
\text{subject to} \quad & f_i(x) \leq 0, \quad i = 1, \ldots, m, \\
& h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

- λ_i are relative weights on the objectives
- if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
- for convex problems, can find (almost) all Pareto optimal points by varying $\lambda > 0$
Example
Example: Regularized least-squares

- regularized least-squares problem: minimize $\left(\|Ax - b\|_2^2, \|x\|_2^2 \right)$
- take $\lambda = (1, \gamma)$ with $\gamma > 0$, and minimize $\|Ax - b\|_2^2 + \gamma \|x\|_2^2$
Example: Risk-return trade-off

- risk-return trade-off: minimize \((-\bar{p}^T x, x^T \Sigma x)\) subject to \(1^T x = 1, x \geq 0\)
- with \(\lambda = (1, \gamma)\) we obtain scalarized problem
 \[
 \begin{align*}
 \text{minimize} & \quad -\bar{p}^T x + \gamma x^T \Sigma x \\
 \text{subject to} & \quad 1^T x = 1, \quad x \geq 0
 \end{align*}
 \]
- objective is negative risk-adjusted return, \(\bar{p}^T x - \gamma x^T \Sigma x\)
- \(\gamma\) is called the risk-aversion parameter