Convex Optimization EE364a: Review Session 1
Notation and Convex Sets

Stanford University

Winter Quarter, 1/15/2013
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
Administration Overview

- Office hours, an unstructured time to ask questions:
 - Monday 4:15-6:15
 - Tuesday 4:15-6:15
 - Wednesday 2:15-4:15, 4:15-6:15
 - Thursday 12:50-2:50, 4:15-6:15, 6:15-8:15

- Review session, more structured time in which we will review specific topics:
 - Tuesday 2:15-3:05

- We also have a site set up on Piazza, where you can post questions

- Contact TAs through:
 ee364a-win1213-staff@lists.stanford.edu

- Homeworks are due across from Packard 243 on Fridays at 5pm
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
Notation — Basic symbols

\(x \in \):

- \(\mathbb{Z} \): \(x \) is an integer
- \(\mathbb{R} \): \(x \) is a real scalar
- \(\mathbb{R}^+ \): \(x \) is a real scalar \(\geq 0 \)
- \(\mathbb{R}^{++} \): \(x \) is a real scalar \(> 0 \)
- \(\mathbb{R}^n \): \(x \) is real vector of length \(n \)
- \(\mathbb{C}^n \): \(x \) is complex vector of length \(n \)

\(X \in \):

- \(\mathbb{R}^{n \times m} \): \(X \) is a matrix of reals of size \(n \times m \)
- \(\mathbb{S}^n \): \(X \) is a symmetric matrix of size \(n \times n \)
- \(\mathbb{S}^{n+} \): \(X \) is a positive semidefinite matrix of size \(n \times n \)
- \(\mathbb{S}^{n++} \): \(X \) is a positive definite matrix of size \(n \times n \)
Notation — Functions

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^m, \ \text{dom} \ f = C \]

- We say that \(f \) is an \(\mathbb{R}^m \)-valued function on domain \(C \) a subset of \(\mathbb{R}^n \)
- Function \(f \) takes as input a vector of reals, \(x \), of length \(n \) such that \(x \in C \) and returns a vector of reals of length \(m \)

\(\sqrt{\text{sqrt}} \) (the square root function) would be expressed:

- \(\sqrt{\text{sqrt}} : \mathbb{R} \rightarrow \mathbb{R}, \ \text{dom} \ \sqrt{\text{sqrt}} = \mathbb{R}_+ \)
- \(\sqrt{\text{sqrt}} : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \)
Notation – Sets

\[C = \{ x \in \mathbb{R}^n \mid f_i(x) \leq b_i, i = 0, \ldots, m \} \]

► We might read this:
 The set \(C \) consists of all \(x \) in \(\mathbb{R}^n \) such that \(f_i(x) \leq b_i \) for \(i \) from 0 to \(m \)

► This means that an element \(x \in \mathbb{R}^n \) is in the set \(C \) if all of the \(m \) inequalities to the right of \(\mid \) evaluate to true

\[C = \{ g(x) \mid f_i(x) \leq b_i, i = 0, \ldots, m \}, f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

► We might read this:
 The set \(C \) consists of all values \(g(x) \) such that \(f_i(x) \leq b_i \) for \(i \) from 0 to \(m \)

► This means that an element \(y \in \mathbb{R}^3 \) is in the set \(C \) if there exists an \(x \in \mathbb{R}^2 \) such that \(y = g(x) \) and, for that \(x \), all of the \(m \) inequalities to the right of \(\mid \) evaluate to true

► This is NOT a set of functions, but \(C \subseteq \mathbb{R}^3 \)
Notation — Representing sets

Most set representations are not unique:

- \(C = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 4 \} \)
- \(C = \{ (r \cos(\theta), r \sin(\theta)) \mid 0 \leq r \leq 2, \theta \in [0, 2\pi] \} \)
- \(C = \{ x \in \mathbb{R}^2 \mid x^T \left(\frac{1}{4} I \right) x \leq 1 \} \)
- \(C = \{ 2u \mid \|u\|_2 \leq 1, u \in \mathbb{R}^2 \} \)
- \(C = \left\{ 2\sqrt{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} u \mid \|u\|_2 \leq 1, u \in \mathbb{R}^2 \right\} \)
- \(C = \bigcap_{\theta \in [0, 2\pi]} \{ x \mid (\cos(\theta), -\sin(\theta))^T x \leq 2 \} \)
Notation — Set operators

- \(A = B \) (equality)
 \(x \in A \) if and only if \(x \in B \)

- \(A \subseteq B \) (subset)
 If \(x \in A \) then \(x \in B \)

- \(C = A \cup B \) (union)
 \(C = \{ x \mid x \in A \text{ or } x \in B \} \)

- \(C = A \cap B \) (intersection)
 \(C = \{ x \mid x \in A, x \in B \} \)

- \(C = A - x \) (operation by an element)
 \(C = \{ y - x \mid y \in A \} \)

- \(C = A \setminus B \) (set difference)
 \(C = \{ x \in A \mid x \notin B \} \)

- \(C = A + B \) (Minkowski sum)
 \(C = \{ x + y \mid x \in A, y \in B \} \)
Set operators — Simple examples

\[A = \{1, 2, 3\}, \ B = \{3, 4, 5\} \]

- \[A \cup B = \{1, 2, 3, 4, 5\} \]
- \[A \cap B = \{3\} \]
- \[A - 1 = \{0, 1, 2\} \]
- \[A \setminus B = \{1, 2\} \]
- \[B \setminus A = \{4, 5\} \]
- \[A + B = \{4, 5, 6, 7, 8\} \]
- \[(A - 1) \cap B = \emptyset \]
Set operators — Minkowski sum and set difference

Notation 12
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
Set interior

- An element $x \in C \subseteq \mathbb{R}^n$ is called an interior point of C if there exists an $\epsilon > 0$ for which $\{y \mid \|y - x\|_2 \leq \epsilon\} \subseteq C$
- The set of all points interior to C is called the interior of C and is denoted $\text{int} \, C$
- If $C = \text{int} \, C$, then the set is open
- A set is closed if its complement, $\mathbb{R}^n \setminus C$, is open
Set interior — Simple examples

- Given $C = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 4 \}$
 $\text{int } C = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 4 \}$

- Given $C = \{ x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 \leq 4, x_3 = 0 \}$
 $\text{int } C = \emptyset$
Set boundary

- The closure of a set $\mathcal{C} \subseteq \mathbb{R}^n$ is defined as
 $$\text{cl} \mathcal{C} = \mathbb{R}^n \setminus \text{int}(\mathbb{R}^n \setminus \mathcal{C})$$
- The boundary of \mathcal{C} is defined as $\text{bd} \mathcal{C} = \text{cl} \mathcal{C} \setminus \text{int} \mathcal{C}$
Set boundary — Simple examples

Given $C = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 4\}$,
$\text{bd } C = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 4\}$

Given $C = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 \leq 4, x_3 = 0\}$,
$\text{bd } C = C$
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
Norms

A function $f : \mathbb{R}^n \to \mathbb{R}$ with $\text{dom } f = \mathbb{R}^n$ is called a norm iff:

- $f(x) = 0$ if and only if $x = 0$
- $f(tx) = |t|f(x)$
- $f(x + y) \leq f(x) + f(y)$
- $f \geq 0$

Norms on \mathbb{R}^n

- $\|x\|_1 = \sum_{i=1}^{n} |x_i|$, ($\ell_1$-norm)
- $\|x\|_2 = \left(\sum_{i=1}^{n} x_i^2 \right)^{\frac{1}{2}}$, ($\ell_2$-norm, Euclidean norm)
- $\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}}$, $p \geq 1$, (p-norm)
- $\|x\|_\infty = \max_i |x_i|$, (infinity norm, Chebyshev norm)
Norm balls

A norm ball is \(\{ x \mid \| x - x_c \| \leq r \} \)

Here are some balls in \(\mathbb{R}^2 \) with \(x_c = 0 \) and \(r = 1 \), which norm induces them?:

\[
\| \cdot \|_2 \quad \| \cdot \|_\infty \quad \| \cdot \|_1 \quad \| \cdot \|_{3.5}
\]
Outline

Administrative
Notation
General sets
Norms
Minimum and minimal
Convexity
Supremum and infimum

The supremum of a set \(C \) is the least upper bound of the set \(C \)

- \(a \) is an upper bound of \(C \) if \(x \leq a, \ \forall x \in C \)
- We represent this as \(\sup C \)
- For a finite set \(C \), \(\sup C = \max C \)
- The supremum of a set, need not be in the set:
 \[
 \sup \{x \in \mathbb{R} \mid x < 2\} = 2
 \]
- \(\sup \emptyset = -\infty \), \(\sup C = \infty \) if \(C \) is unbounded above

The infimum of a set \(C \) is the greatest lower bound of the set \(C \)

- \(a \) is a lower bound of \(C \) if \(x \geq a, \ \forall x \in C \)
- We represent this as \(\inf C \)
- For a finite set \(C \), \(\inf C = \min C \)
- \(\inf C = -\sup (-C) \)
- \(\inf \emptyset = \infty \), \(\inf C = -\infty \) if \(C \) is unbounded below
Minimum and minimal

- Remember:
 - A generalized inequality is defined by a proper cone (convex, closed, solid, pointed) K
 - $x \preceq_K y$ means $y - x \in K$
 - $x \prec_K y$ means $y - x \in \text{int } K$
 - This need not be, and often will not be, a total ordering

- If x is a minimum element of S then all elements in S are larger than x

- If x is a minimal element of S then no element in S is smaller than x

- In a total ordering, minimum and minimal are the same
Minimum and minimal — Examples

Using the cone \mathbb{R}_2^+:

- x_1 is a minimum element of S_1
- x_2 is a minimal element of S_2
- Is x_1 a minimal element of S_1?
 - Yes
- Is x_2 a minimum element of S_2?
 - No
Minimum and minimal — More examples

Consider the ordering induced by \(K = \mathbb{R}^2_+ \)
\(S = \{(1, 2), (2, 3), (3, 2)\} \)

▷ What are the minimal elements of \(S \)?
 ▷ (1, 2)
▷ Does \(S \) have a minimum element?
 ▷ Yes

\(S = \{(0, 3), (0, 4), (1, 2), (1, 3), (2, 0)\} \)

▷ What are the minimal elements of \(S \)?
 ▷ (0, 3), (1, 2), (2, 0)
▷ Does \(S \) have a minimum element?
 ▷ No
Outline

Administrative

Notation

General sets

Norms

Minimum and minimal

Convexity
How to test convexity

- Apply definition
 \[x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \implies \theta x_1 + (1 - \theta) x_2 \in C \]

- Show the the is set is obtained form simple convex sets by operations that preserve convexity:

<table>
<thead>
<tr>
<th>Simple convex sets</th>
<th>Operations that preserve convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>halfspaces</td>
<td>intersections</td>
</tr>
<tr>
<td>norm balls</td>
<td>affine functions</td>
</tr>
<tr>
<td>norm cones</td>
<td>perspective function</td>
</tr>
<tr>
<td>polyhedra</td>
<td>linear-fractional functions</td>
</tr>
</tbody>
</table>

- Other methods you will learn later
Some simple sets

Are the following sets convex?

- $S = \{ x \in \mathbb{R} \mid x^2 \leq 1 \}$
 - Yes

- $S = \{ x \in \mathbb{R} \mid x^2 \geq 1 \}$
 - No

- $S = \{ (x, x^2) \mid x \in \mathbb{R} \}$
 - No

- $S = \{ (x, y) \mid y \geq x^2, x \in \mathbb{R} \}$
 - Yes
The ellipse

How can we show that an ellipse is convex?

- Show that a mixture of two arbitrary points in the ellipse, also lies in the ellipse
- Show that the intersection of the ellipse with an arbitrary line is convex
- Show that the ellipse is an affine transformation of a ℓ_2 ball
- Show that the ellipse is a norm ball for a particular norm
- Show that it is an intersection of halfspaces
The hyperbolic set

Is the set \(\{x \in \mathbb{R}^2_+ \mid x_1 x_2 \geq 1\} \) convex?

We will prove convexity using the definition:

- Consider two points \((x_1, x_2), (y_1, y_2)\) in the set.
- If \(x \succeq y\) then \(z = \theta x + (1 - \theta)y \succeq y\), so \(z_1 z_2 \geq y_1 y_2 \geq 1\).
- A similar argument holds if \(y \succeq x\).
- If \(x \not\succeq y\) or \(y \not\succeq x\) then \((y_1 - x_1)(y_2 - x_2) < 0\)
 - \((\theta x_1 + (1 - \theta)y_1)(\theta x_2 + (1 - \theta)y_2)\)
 - \(= \theta^2 x_1 x_2 + (1 - \theta)^2 y_1 y_2 + \theta(1 - \theta)x_1 y_2 + \theta(1 - \theta)x_2 y_1\)
 - \(= \theta x_1 x_2 + (1 - \theta)y_1 y_2 - \theta(1 - \theta)(y_1 - x_1)(y_2 - x_2)\)
 - \(\geq 1\).
- Yes, the set is convex.
Copositive matrices

Is the set of copositive matrices $C = \{ M \in \mathbb{R}^{n \times n} \mid x^T M x \geq 0, \forall x \succeq 0 \}$ convex?

- Choose $M_1, M_2 \in C$
- $x^T M_1 x \geq 0$ and $x^T M_2 x \geq 0$ for $x \succeq 0$
- Let $N = \theta M_1 + (1 - \theta) M_2$, $0 \leq \theta \leq 1$
- $x^T N x$
- $= x^T (\theta M_1 + (1 - \theta) M_2) x$
- $= \theta x^T M_1 x + (1 - \theta) x^T M_2 x$
- ≥ 0, for $x \succeq 0$
- So $N \in C$ so C is convex.