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1 Introduction

In EE 364, Convex optimization, we have seen that what makes a problem computationally
easy or hard is not linearity or nonlinearity but rather convexity or nonconvexity. In par-
ticular, EE 364 detailed an extremely wide range of convex problems which could be solved
with very good complexity bounds by an appropriate use of Newton’s method. In this light,
it is tempting to consider nonconvexity, hence complexity, as only the result of poor problem
formulation.

However, nonconvex constraints and objectives do arise in important practical problems,
often due to some natural limitations such as for example discretization, fixed transaction
costs, binary communications, etc...

The question is how can we use some of the efficient methods designed for convex problems
to get at least approximate solutions or bounds for nonconvex ones? We will detail some of
the most successful techniques answering that question. Here, we first focus on Lagrangian
relaxations, i.e., using weak duality and the convexity of duals to get bounds on the optimal
value of nonconvex problems. In a second section, we show how randomization techniques
provide near optimal feasible points with, in some cases, bounds on their suboptimality.

1.1 Problem definition

In this note, we will focus on a specific class of problems: Quadratically Constrained
Quadratic Programs, or QCQP (see also §4.4 in [?]). We will see that the range of problems
that can be formulated as QCQP is extremely vast (in fact, Shor shows that all polynomial
problems can be reduced to QCQP) and we will focus on some specific examples throughout
the notes. We write a generic QCQP as:

minimize xT P0x + qT
0 x + r0

subject to xT Pix + qT
i x + ri ≤ 0, i=1,. . . ,m,

(1)
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in the variable x ∈ Rn with parameters Pi ∈ Sn, qi ∈ Rn and ri ∈ R. In the case where all
the matrices Pi are positive semidefinite, the problem is convex and can be solved efficiently.
Here we will focus on the case where at least one of the Pi is not positive semidefinite.
Note that the formulation above implicitly includes problems with equality constraints as
an equality constraint is equivalent to two opposing inequalities.

1.2 Examples and applications

We list here some examples of nonconvex problems with important practical applications.

1.2.1 Boolean least squares

The problem is stated as:

minimize ‖Ax − b‖2

subject to x2
i = 1, i = 1, . . . , n,

(2)

in the variable x ∈ Rn. This is a basic problem in digital communications (maximum
likelihood estimation for digital signals). As the problem is NP-Hard, a brute force solution
is to check for all 2n possible values of x... But the problem can also be directly written as
a QCQP:

minimize xT AT Ax − 2bT Ax + bT b
subject to x2

i − 1 = 0, i = 1, . . . , n,

which is of the form (1).

1.2.2 Minimum cardinality problems

The problem consists in finding a minimum cardinality solution to a set of linear inequalities
and can be stated as:

minimize Card(x)
subject to Ax � b,

(3)

in the variable x ∈ Rn, with Card(x) the cardinal of the set {i : xi 6= 0}. For simplicity, we
assume that the feasible set {x : Ax � b} is compact and included in some unit ball with
radius R > 0. We can then reformulate this problem as a QCQP of the form (1):

minimize 1T v
subject to Ax � b

−Rv � x � Rv
v2

i − vi = 0, i = 1, . . . , n,

in the variables x ∈ Rn and v ∈ Rn. This problem has many application in engineering and
finance, including for example low-order controller design and portfolio optimization with
fixed transaction costs.
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1.2.3 Partitioning problems

We consider here the two-way partitioning problem described in §5.1.4 and exercise 5.39 of
[?]:

minimize xT Wx
subject to x2

i = 1, i = 1, . . . , n,
(4)

with variable x ∈ Rn, where W ∈ Sn satisfies Wii = 0. This problem is directly a QCQP of
the form (1). A feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1},

and the matrix coefficient Wij can be interpreted as the cost of having the elements i and j
in the same partition, with −Wij the cost of having i and j in different partitions. The
objective in (4) is the total cost, over all pairs of elements, and problem (4) seeks to find the
partition with least total cost.

1.2.4 MAXCUT

MAXCUT is a classic problem in network optimization and a particular case of the parti-
tioning problem above. Here W ∈ Sn is a matrix with positive coefficients describing the
network topology, with W (i, j) = 0 if no arc connects nodes i and j in the network. The
problem is then formulated as:

maximize xT Wx
subject to x2

i = 1, i = 1, . . . , n,
(5)

with variable x ∈ Rn. The objective here is to find a partition of the set so that the sum
of the coefficients W (i, j) of the nodes linking the two partitions is maximized (hence the
name MAX CUT).

1.2.5 Polynomial problems

A polynomial problem seeks to minimize a polynomial over a set defined by polynomial
inequalities:

minimize p0(x)
subject to pi(x) ≤ 0, i = 1, . . . , m.

While seemingly much more general than simple QCQPs, all polynomial problems can be
turned into nonconvex QCQPs. Let us briefly detail how. First, we notice that we can
reduce the maximum degree of an equation by adding variables. For example, we can turn
the constraint

y2n + (. . .) ≤ 0

into
un + (. . .) ≤ 0
u = y2.
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We have reduced the maximum degree of the original inequality by introducing a new variable
and a quadratic equality constraint. We can also get rid of product terms, this time

xyz + (. . .) ≤ 0

becomes
ux + (. . .) ≤ 0
u = yz.

Here, we have replaced a product of three variables by a product of two variables (quadratic)
plus an additional quadratic equality constraint. By applying these transformations itera-
tively, we can transform the original polynomials into quadratic objective and constraints,
thus turning the original polynomial problem into a QCQP on a larger set of variables.

Example. Let’s work out a specific example. Suppose that we want to solve the
following polynomial problem:

minimize x3 − 2xyz + y + 2
subject to x2 + y2 + z2 − 1 = 0,

in the variables x, y, z ∈ R. We introduce two new variables u, v ∈ R with

u = x2, v = yz.

The problem then becomes:

minimize xu − 2xv + y + 2
subject to x2 + y2 + z2 − 1 = 0

u − x2 = 0
v − yz = 0,

which is a QCQP of the form (1), in the variables x, y, z, u, v ∈ R.

2 Convex relaxations

In this section, we begin by describing some direct relaxations of (1) using semidefinite pro-
gramming. We then detail how Lagrangian duality can be used as an “automatic” procedure
to get lower bounds on the optimal value of the nonconvex QCQP described in (1). Note
that both techniques provide lower bounds on the optimal value of the problem but give
only a minimal hint on how to find an approximate solution (or even a feasible point...), this
will be the object of the next section.

2.1 Semidefinite relaxations

Starting from the original generic QCQP:

minimize xT P0x + qT
0 x + r0

subject to xT Pix + qT
i x + ri ≤ 0, i=1,. . . ,m,
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using xT Px = Tr(P (xxT )), we can rewrite it:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i=1,. . . ,m,

X = xxT .
(6)

We can directly relax this problem into a convex problem by replacing the last nonconvex
equality constraint X = xxT with a (convex) positive semidefiniteness constraint X −xxT �
0. We then get a lower bound on the optimal value of (1) by solving the following SDP:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i=1,. . . ,m,

X � xxT .

where the last constraint X � xxT is convex and can be formulated as a Schur complement
(see §A.5.5 in [?]):

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i=1,. . . ,m,

[

X xT

x 1

]

� 0,

2.2 Lagrangian relaxations

We now study a more rigorous method to get relaxations of nonconvex problems, taking
advantage of the fact that the dual of a problem is always convex, hence efficiently solvable.
Again, starting from the original problem in (1):

minimize xT P0x + qT
0 x + r0

subject to xT Pix + qT
i x + ri ≤ 0, i=1,. . . ,m,

in the variable x ∈ Rn with parameters Pi ∈ Sn, qi ∈ Rn and ri ∈ R. We form the
Lagrangian:

L(x, λ) = xT

(

P0 +
m
∑

i=1

λiPi

)

x +

(

q0 +
m
∑

i=1

λiqi

)T

x + r0 +
m
∑

i=1

λiri

in the variables x ∈ Rn and λ ∈ Rm
+ . In the QCQP case, the dual can be computed explicitly

using the fact that (see example 4.5 in [?]):

inf
x∈R

xT Px + qT x + r =

{

r − 1
4
qT P †q, if P � 0 and q ∈ R(P )

−∞, otherwise.

where we have noted P † the pseudo-inverse of P . We now have:

inf
x∈R

n

L(x, λ) = −
1

4

(

q0 +
m
∑

i=1

λiqi

)T (

P0 +
m
∑

i=1

λiPi

)† (

q0 +
m
∑

i=1

λiqi

)

+
m
∑

i=1

λiri + r0
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and we can form the dual of (1), using Schur complements (cf. §A.5.5):

maximize γ +
∑m

i=1 λiri + r0

subject to

[

(P0 +
∑m

i=1 λiPi) (q0 +
∑m

i=1 λiqi) /2

(q0 +
∑m

i=1 λiqi)
T /2 −γ

]

� 0

λi ≥ 0, i = 1, . . . , m,

(7)

in the variable λ ∈ Rm. As the dual to (1), this is a convex program, it is in fact a semidefinite
program. Weak duality implies that its optimum value is a lower bound on the optimal value
of (1). Using semidefinite duality (see example 5.1 in [?]), we can compute the dual of this
last problem, i.e. the bidual of (1):

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i=1,. . . ,m,

[

X xT

x 1

]

� 0,
(8)

in the variables X ∈ Sn and x ∈ Rn. We observe that this also corresponds to a relaxation of
(6), having changed the constraint X = xxT into X � xxT (by Schur complement, see §A.5.5
in [?]), hence we have recovered via Lagrangian duality techniques the relaxation found at
the beginning of the section. This technique of taking the dual twice produces a lower bound
for the generic QCQP in (1).

It is important to keep in mind however that this second dual is not unique. Different
choices of domains for x will sometimes produce different duals and different second duals. To
complicate matters a little further, some of these choices of dual produce better bounds than
others (see [?] for a discussion)... We will see how this works out in practice by computing
relaxations for some of the example problems described above.

2.3 Examples

Let us now compute the Lagrangian relaxations of the examples detailed above.

2.3.1 MINCARD relaxation

Let’s first consider the MINCARD problem detailed in (3):

minimize Card(x)
subject to Ax � b.

If we assume that the feasible set {x : Ax � b} is compact and included in some centered
ball with radius R, we can reformulate this problem as:

minimize 1T v
subject to Ax � b

−Rv � x � Rv
v ∈ {0, 1}n,

(9)
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in the variables x, v ∈ Rn, and we then turn this into a QCQP by replacing the constraints
vi ∈ {0, 1} by v2

i − vi = 0. The problem then becomes:

minimize 1T v
subject to Ax � b

−Rv � x � Rv
v2

i − vi = 0, i = 1, . . . , n.

The relaxation given by (8) is then:

minimize 1T v
subject to Ax � b

−Rv � x � Rv
Tr(eie

T
i X) − eT

i x = 0, i = 1, . . . , n
[

X xT

x 1

]

� 0,

where ei is the Euclidean basis in Rn. Both [?] and [?, Th. 5.2] show that this relaxation
produces the same lower bound as the direct linear programming relaxation:

minimize 1T v
subject to Ax � b

−Rv � x � Rv
v ∈ [0, 1]n,

(10)

which is also, up to a multiplicative constant, the classical l1 heuristic described in [?], which
replaces the function Card(x) with its largest convex lower bound ‖x‖1:

minimize ‖x‖1

subject to Ax � b.
(11)

2.3.2 Boolean least squares

The original boolean least squares problem in (2) is written:

minimize ‖Ax − b‖2

subject to x2
i = 1, i = 1, . . . , n,

and we can relax it as an SDP:

minimize Tr(AX) + 2bT Ax + bT b

subject to

[

X xT

x 1

]

� 0

Xii = 1, i = 1, . . . , n,

in the variables x ∈ Rn and X ∈ Sn
+. This program then produces a lower bound on the

optimal value of the original problem.
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2.3.3 Partitioning and MAXCUT

The partitioning problem defined above reads:

minimize xT Wx
subject to x2

i = 1, i = 1, . . . , n.
(12)

Here, the problem is directly formulated as a QCQP and the variable x disappears from the
relaxation, which becomes:

minimize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n.
(13)

MAXCUT corresponds to a particular choice of matrix W .

2.4 Duality gap and conservatism estimate

Weak duality implies that the optimal value of the Lagrangian relaxation is a lower bound
on the value of the original program. Because the dual is a convex program, under some
constraint qualification conditions (see [?, §5.2.3]) there is no duality gap between the dual
and the bidual, hence the duality gap between the original program and its dual gives a
measure of the degree of “conservatism” in the relaxation. In some particular instances, it
is possible to show that, even though the original program is not convex, the duality gap is
zero and the convex relaxation produces the optimal value.

A QCQP with one constraint is a classic example (see Appendix B in [?], or [?] for other
examples) and relies on the fact that the numerical range of two quadratic forms is a convex
set. Hence, under some technical conditions, the programs:

minimize xT P0x + qT
0 x + r0

subject to xT P1x + qT
1 x + r1 ≤ 0,

(14)

and
maximize γ + λr1 + r0

subject to

[

(P0 + λP1) (q0 + λq1) /2

(q0 + λq1)
T /2 −γ

]

� 0

λ ≥ 0,

(15)

in the variables x ∈ Rn and λ ∈ R respectively, produce the same optimal value, even if the
first one is nonconvex. This result is also known as the S-procedure in control theory. The
key implication here of course is that while the original program is possibly nonconvex and
numerically hard, its dual is a semidefinite program, hence efficiently produces the optimum
of the original problem.
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3 Domain restriction & linearization

The relaxations technique detailed above produces “good” lower bounds on the optimal value
but no feasible points. Here, we work on the complementary approach and try to find “good”
feasible points corresponding to a local minimum. Let x0 be an initial feasible point (this
can be hard to find, see the discussion on phase I problems in §11.4 of [?]).

3.1 Linearization

We start by leaving all convex constraints unchanged, linearizing the nonconvex ones around
the original feasible point x(0). Consider for example the constraint:

xT Px + qT x + r ≤ 0,

we decompose the matrix P into its positive and negative parts:

P = P+ − P−, with P+, P− � 0.

The original constraint can be rewritten as

xT P+x + qT
0 x + r0 ≤ xT P−x,

and both sides of the inequality are now convex quadratic functions. We linearize the right
hand side around the point x0

xT P+x + qT
0 x + r0 ≤ (x(0))T P−x(0) + 2(x(0))T P−(x − x(0)).

The right hand side is now an affine lower bound on the original function xT P−x (see §3.1.3
in [?]). This means that the resulting constraint is convex and more conservative than the
original one, hence the feasible set of the new problem will be a convex subset of the original
feasible set.

3.2 Iterative method

The new problem, formed by linearizing all the nonconvex constraints using the method
described above, is convex and can be solved efficiently to produce a new feasible point x(1)

with a lower objective value. If we linearize again the problem around x(1) and repeat the
procedure, we get a sequence of feasible points with decreasing objective values.

4 Randomization and bounds on suboptimality

The Lagrangian relaxation techniques developed in §2 provided lower bounds on the optimal
value of the program in (1), they did not however give any particular hint on how to compute
good feasible points. Moreover, even though the relaxation’s conservatism can be measured
in theory by the duality gap, this gap is very hard to quantify in practice.
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The semidefinite relaxation in (8) produces a positive semidefinite or covariance matrix
together with the lower bound on the objective. In this section, we exploit this additional
output to compute good approximate solutions with, in some cases, hard bounds on their
suboptimality.

4.1 Randomization

In the last section, the original QCQP:

minimize xT P0x + qT
0 x + r0

subject to xT Pix + qT
i x + ri ≤ 0, i=1,. . . ,m,

was relaxed into:

minimize Tr(XP0) + qT
0 x + r0

subject to Tr(XPi) + qT
i x + ri ≤ 0, i=1,. . . ,m,

[

X xT

x 1

]

� 0.
(16)

The last (Schur complement) constraint:
[

X xT

x 1

]

� 0,

being equivalent to X − xxT � 0. In other words, suppose x and X are the solution to the
relaxed program in (16), then X − xxT is a covariance matrix.

If we pick x as a Gaussian variable with x ∼ N (x, X − xxT ), x will solve the QCQP in
(1) “on average” over this distribution, meaning:

minimize E(xT P0x + qT
0 x + r0)

subject to E(xT Pix + qT
i x + ri) ≤ 0, i=1,. . . ,m,

and a “good” feasible point can then be obtained by sampling x a sufficient number of times,
then simply keeping the best feasible point.

4.2 Bounds on suboptimality

In certain particular cases however, it is possible to get a hard bound on the gap between the
optimal value and the relaxation result. A classic example is that of the MAXCUT bound
described in [?] or [?, Th. 4.3.2]. The MAXCUT problem (5) reads:

maximize xT Wx
subject to x2

i = 1, i = 1, . . . , n,
(17)

its Lagrangian relaxation is then computed as in (13):

maximize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n.
(18)
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Let X be a solution to this program, we look for a good feasible point by sampling a
normal distribution N (0, X) with mean zero and variance given by X, and convert each
sample point x to a feasible point by rounding it to the nearest value in {−1, 1}, i.e. taking
x̂ = sgn(x). Crucially, when x̂ is sampled using that procedure, the expected value of the
objective E(x̂T Wx) can be computed explicitly:

E(x̂T Wx) =
2

π

n
∑

i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X)).

We are guaranteed to reach this expected value 2/π Tr(W arcsin(X)) after sampling a few
(feasible) points x̂, hence we know that the optimal value OPT of the MAXCUT problem
is between 2/π Tr(W arcsin(X)) and Tr(WX).

Furthermore, with arcsin(X) � X (see [?, p. 174]), we can simplify (and relax) the above
expression to get:

2

π
Tr(WX) ≤ OPT ≤ Tr(WX).

This means that the procedure detailed above guarantees that we can find a feasible point
that is at most 2/π suboptimal (after taking a certain number of samples from a Gaussian
distribution).

5 Numerical Examples

In this section, we work out some numerical examples.

5.1 Boolean least-squares

The problem is given by:

minimize ‖Ax − b‖2

subject to x2
i = 1, i = 1, . . . , n

with

‖Ax − b‖2 = xT AT Ax − 2bT Ax + bT b

= TrAT AX − 2bT Ax + bT b

where X = xxT . We can express the BLS problem as

minimize TrAT AX − 2bT Ax + bT b
subject to Xii = 1, X � xxT , rank(X) = 1

which is still a very hard problem...
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5.1.1 Semidefinite relaxation for BLS

Using the technique in §2, we compute the Lagrangian relaxation of the BLS problem using:

X � xxT ⇐⇒

[

X x
xT 1

]

� 0,

for X ∈ Sn
+ and x ∈ Rn, to obtain a semidefinite relaxation:

minimize TrAT AX − 2bT AT x + bT b

subject to Xii = 1,

[

X x
xT 1

]

� 0
(19)

in the variables X ∈ Sn
+ and x ∈ Rn. The optimal value of this SDP gives a lower bound

for BLS, if the optimal matrix is rank one, we’re done.

5.1.2 Interpretation via randomization

Using the procedure in §4, we sample a normal distribution z ∼ N (x, X−xxT ), with E z2
i = 1

and the SDP objective is E ‖Az−b‖2. This suggests a simple randomized method for getting
approximate solutions to the BLS problem:

• find X⋆, x⋆, optimal for the semidefinite relaxation in (19)

• generate sample points zi from N (x⋆, X⋆ − x⋆x⋆T )

• take xi = sgn(zi) as approximate solution of BLS
(can repeat many times and take best one)

And finally, pick the best xi as an approximate solution.

5.1.3 Example

We set up the problem as follows:

minimize ‖Ax − b‖2

subject to x2
i = 1, i = 1, . . . , n

with

• (randomly chosen) parameters A ∈ R150×100, b ∈ R150

• x ∈ R100, so feasible set has 2100 ≈ 1030 points

and compare the various approximation techniques:

• The least-squares approximate solution: minimize ‖Ax− b‖ s.t. ‖x‖2 = n, then round,
yields an objective value 8.7% over SDP relaxation bound.
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Figure 1: Distribution of objective values for points sampled using the randomiza-
tion technique in §4.

• The randomized method: (using the procedure in §4)

– best of 20 samples: 3.1% over SDP bound
– best of 1000 samples: 2.6% over SDP bound

In figure (5.1.3), we plot the distribution of the objective values reached by the feasible
points found using the randomized procedure above. Our best solution comes within 2.6%
of the SDP lower bound, compared to the 8.7% of the simple LS solution.

5.2 Partitioning

We consider here the two-way partitioning problem described on pages 202–203 of [?], and
also considered in exercise 5.39 in the same source:

minimize xT Wx
subject to x2

i = 1, i = 1, . . . , n,
(20)

with variable x ∈ Rn, where W ∈ Sn satisfies Wii = 0. A feasible x corresponds to the
partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1},

and the matrix coefficient Wij can be interpreted as the cost of having the elements i and j
in the same partition, with −Wij the cost of having i and j in different partitions. The
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objective in (20) is the total cost, over all pairs of elements, and the problem (20) is to find
the partition with least total cost. We define the optimal value of the partitioning problem
as p⋆. We let x⋆ denote an optimal partition. (Note that −x⋆ is also an optimal partition.)

In §2, we have seen that the Lagrange dual of problem (20) is given by the SDP

maximize −1T ν
subject to W + diag(ν) � 0

(21)

with variables ν ∈ Rn. The dual of this SDP is the SDP

minimize TrWX
subject to X � 0

Xii = 1, i = 1, . . . , n,
(22)

with variable X ∈ Sn. This is the Lagrangian relaxation of problem (20). The optimal
values of these two SDPs are equal, and provide a lower bound on the optimal value p⋆ of
the partitioning problem (20). We refer to the common optimal value of the SDPs as d⋆ and
let ν⋆ and X⋆ denote the corresponding optimal points.

5.2.1 A simple heuristic for partitioning

One simple heuristic for finding a good partition is to solve the SDPs above, to find X⋆ (and
the bound d⋆). Let v denote an eigenvector of X⋆ associated with its largest eigenvalue, and
let x̂ = sgn(v). The vector x̂ is our guess for a good partition.

5.2.2 A randomized method.

We generate independent samples x(1), . . . , x(k) from a normal distribution on Rn, with zero
mean and covariance X⋆. For each sample we consider the heuristic approximate solution
x̂(i) = sgn(x(i)). We then take the best among these, i.e. the one with lowest cost.

5.2.3 Greedy method

We can improve these results a little bit using the following simple greedy heuristic. Suppose
the matrix Y = x̂T Wx̂ has a column j whose sum

∑n
i=1 yij is positive. Switching x̂j to −x̂j

will decrease the objective by 2
∑n

i=1 yij. If we pick the column yj0 with largest sum, switch
x̂j0 and repeat until all column sums

∑n
i=1 yij are negative, we further decrease the objective.

5.2.4 Numerical Example

For the data in part_prob_data.m, the optimal SDP lower bound d⋆ is equal to −1641 and
the sgn(x) heuristic gives a point (partition) with total cost −1348. Extracting a solution
from the SDP solution using the simple heuristic above gives a solution with cost −1280,
while applying the greedy method pushes that cost down to −1372. Exactly what the optimal
value is, we can’t say; all we can say at this point is that it is between −1641 and −1372.
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Figure 2: Histogram of the objective values attained by the random sample parti-
tions.

We then try the randomized method, applying the greedy method to each sample, and
plot in figure (5.2.4) a histogram of the objective obtained over 1000 samples. Many of these
samples have an objective value larger than the original one above, but some have a lower
cost. For our implementation, we found the minimum value −1392. The evolution of the
minimum value found as a function of the sample size is shown in figure (5.2.4). Note that
our best partition was found in around 100 samples. We’re not sure what the optimal cost
is, but now we know it’s between −1641 and −1392.
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Figure 3: Best objective value versus number of sample points.
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