
Analytic Center Cutting-Plane Method

S. Boyd, L. Vandenberghe, and J. Skaf

April 25, 2018

Contents

1 Analytic center cutting-plane method 2

2 Computing the analytic center 3

3 Pruning constraints 5

4 Lower bound and stopping criterion 5

5 Convergence proof 7

6 Numerical examples 10
6.1 Basic ACCPM . 10
6.2 ACCPM with constraint dropping . 10
6.3 Epigraph ACCPM . 13

1

In these notes we describe in more detail the analytic center cutting-plane method (AC-
CPM) for non-differentiable convex optimization, prove its convergence, and give some nu-
merical examples. ACCPM was developed by Goffin and Vial [GV93] and analyzed by
Nesterov [Nes95] and Atkinson and Vaidya [AV95].

These notes assume a basic familiarity with convex optimization (see [BV04]), cutting-
plane methods (see the EE364b notes Localization and Cutting-Plane Methods), and subgra-
dients (see the EE364b notes Subgradients).

1 Analytic center cutting-plane method

The basic ACCPM algorithm is:

Analytic center cutting-plane method (ACCPM)

given an initial polyhedron P0 known to contain X.

k := 0.
repeat

Compute x(k+1), the analytic center of Pk.
Query the cutting-plane oracle at x(k+1).
If the oracle determines that x(k+1) ∈ X, quit.
Else, add the returned cutting-plane inequality to P .
Pk+1 := Pk ∩ {z | aT z ≤ b}

If Pk+1 = ∅, quit.
k := k + 1.

There are several variations on this basic algorithm. For example, at each step we can add
multiple cuts, instead of just one. We can also prune or drop constraints, for example, after
computing the analytic center of Pk. Later we will see a simple but non-heuristic stopping
criterion.

We can construct a cutting-plane aT z ≤ b at x(k), for the standard convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

as follows. If x(k) violates the ith constraint, i.e., fi(x
(k)) > 0, we can take

a = gi, b = gTi x
(k) − fi(x(k)), (1)

where gi ∈ ∂fi(x(k)). If x(k) is feasible, we can take

a = g0, b = gT0 x
(k) − f0(x(k)) + f

(k)
best, (2)

where g0 ∈ ∂f0(x(k)), and f
(k)
best is the best (lowest) objective value encountered for a feasible

iterate.

2

2 Computing the analytic center

Each iteration of ACCPM requires computing the analytic center of a set of linear inequalities
(and, possibly, determining whether the set of linear inequalities is feasible),

aTi x ≤ bi, i = 1, . . . ,m,

that define the current localization polyhedron P . In this section we describe some methods
that can be used to do this.

We note that the inequalities defined by ai and bi, as well as their number m, can change
at each iteration of ACCPM, as we add new cutting-planes and possibly prune others. In
addition, these inequalities can include some of the original inequalities that define P0.

To find the analytic center, we must solve the problem

minimize Φ(x) = −∑m
i=1 log(bi − aTi x). (3)

This is an unconstrained problem, but the domain of the objective function is the open
polyhedron

domΦ = {x | aTi x < bi, i = 1, . . . ,m},

i.e., the interior of the polyhedron. Part of the challenge of computing the analytic center is
that we are not given a point in the domain. One simple approach is to use a phase I optimiza-
tion method (see [BV04, §11.4]) to find a point in domΦ (or determine that domΦ = ∅).
Once we find such a point, we can use a standard Newton method to compute the analytic
center (see [BV04, §9.5]).

A simple alternative is to use an infeasible start Newton method (see [BV04, §10.3]) to
solve (3), starting from a point that is outside domΦ, as suggested by Goffin and Sharifi-
Mokhtarian in [GSM99]. We reformulate the problem as

minimize −∑m
i=1 log yi

subject to y = b− Ax, (4)

with variables x and y. The infeasible start Newton method can be started from any x and
any y � 0. We can, for example, take the inital x to be the previous point xprev, and choose
y as

yi =

{
bi − aTi x if bi − aTi x > 0
1 otherwise.

In the basic form of ACCPM xprev strictly satisfies all of the inequalities except the last one
added; in this case, yi = bi − aTi x holds for all but one index.

We define the primal and dual residuals for (4) as

rp = y + Ax− b, rd =

[
ATν
g + ν

]
, (5)

3

where g = −diag(1/yi)1 is the gradient of the objective. We also define r to be (rd, rp).
The Newton step at a point (x, y, ν) is defined by the system of linear equations 0 0 AT

0 H I
A I 0


 ∆x

∆y
∆ν

 = −
[
rd
rp

]
,

where H = diag(1/y2i) is the Hessian of the objective. We can solve this system by block
elimination (see [BV04, §10.4]), using the expressions

∆x = −(ATHA)−1(ATg − ATHrp),

∆y = −A∆x− rp, (6)

∆ν = −H∆y − g − ν.

We can compute ∆x from the first equation in several ways. We can, for example, form
ATHA, then compute its Cholesky factorization, then carry out backward and forward
substitution. Another option is to compute ∆x by solving the least-squares problem

∆x = argminz

∥∥∥H1/2Az −H1/2rp +H−1/2g
∥∥∥ .

The infeasible start Newton method is:

Infeasible start Newton method.

given starting point x, y � 0, tolerance ε > 0, α ∈ (0, 1/2), β ∈ (0, 1).

ν := 0.

Compute residuals from (5).

repeat
1. Compute Newton step (∆x,∆y,∆ν) using (6).
2. Backtracking line search on ‖r‖2.

t := 1.
while y + t∆y 6� 0, t := βt.
while ‖r(x+ t∆x, y + t∆y, ν + t∆ν)‖2 > (1− αt)‖r(x, y, ν)‖2, t := βt.

3. Update. x := x+ t∆x, y := y + t∆y, ν := ν + t∆ν.
until y = b− Ax and ‖r(x, y, ν)‖2 ≤ ε.

This method works quite well, unless the polyhedron is empty (or, in practice, very small),
in which case the algorithm does not converge. To guard against this, we fix a maximum
number of iterations. Typical parameter values are β = 0.5, α = 0.01, with maximum
iterations set to 50.

4

3 Pruning constraints

There is a simple method for ranking the relevance of the inequalities aTi x ≤ bi, i = 1, . . . ,m
that define a polyhedron P , once we have computed the analytic center x∗. Let

H = ∇2Φ(x∗) =
m∑
i=1

(bi − aTi x)−2aia
T
i .

Then the ellipsoid
Ein = {z | (z − x∗)TH(z − x∗) ≤ 1}

lies inside P , and the ellipsoid

Eout = {z | (z − x∗)TH(z − x∗) ≤ m2},

which is Ein scaled by a factor m about its center, contains P . Thus the ellipsoid Ein at least
grossly (within a factor m) approximates the shape of P .

This suggests the (ir)relevance measure

ηi =
bi − aTi x∗

‖H−1/2ai‖
=

bi − aTi x∗√
aTi H

−1ai

for the inequality aTi x ≤ bi. This factor is always at least one; if it is m or larger, then the
inequality is certainly redundant.

These factors (which are easily computed from the computations involved in the New-
ton method) can be used to decide which constraints to drop or prune. We simply drop
constraints with the large values of ηi; we keep constraints with smaller values. One typical
scheme is to keep some fixed number N of constraints, where N is usually chosen to be be-
tween 3n and 5n. When this is done, the computational effort per iteration (i.e., centering)
does not grow as ACCPM proceeds, as it does when no pruning is done.

4 Lower bound and stopping criterion

In §7 of the notes Localization and Cutting-Plane Methods we described a general method
for constructing a lower bound on the optimal value p? of the convex problem

minimize f0(x)
subject to f1(x) ≤ 0, Cx � d,

(7)

assuming we have evaluated the value and a subgradient of its objective and constraint
functions at some points. For notational simplicity we lump multiple constraints into one
by forming the maximum of the constraint functions.

We will re-order the iterates so that at x(1), . . . , x(q), we have evaluated the value and a
subgradient of the objective function f0. This gives us the piecewise-linear underestimator
f̂0 of f0, defined as

f̂0(z) = max
i=1,...,q

(
f0(x

(i)) + g
(i)T
0 (z − x(i))

)
≤ f0(z).

5

We assume that at x(q+1), . . . , x(k), we have evaluated the value and a subgradient of the
constraint function f1. This gives us the piecewise-linear underestimator f̂1, given by

f̂1(z) = max
i=q+1,...,k

(
f1(x

(i)) + g
(i)T
1 (z − x(i))

)
≤ f1(z).

Now we form the problem

minimize f̂0(x)

subject to f̂1(x) ≤ 0, Cx � d,
(8)

whose optimal value is a lower bound on p?.
In ACCPM we can easily construct a lower bound on the problem (8), as a by-product

of the analytic centering computation, which in turn gives a lower bound on the original
problem (7). We first write (8) as the LP

minimize t

subject to f0(x
(i)) + g

(i)T
0 (x− x(i)) ≤ t, i = 1, . . . , q

f1(x
(i)) + g

(i)T
1 (x− x(i)) ≤ 0, i = q + 1, . . . , k

Cx � d,

(9)

with variables x and t. The dual problem is

maximize
∑q

i=1 λi(f0(x
(i))− g(i)T0 x(i)) +

∑k
i=q+1 λi(f1(x

(i))− g(i)T1 x(i))− dTµ
subject to

∑q
i=1 λig

(i)
0 +

∑k
i=q+1 λig

(i)
1 + CTµ = 0

µ � 0, λ � 0,
∑q

i=1 λi = 1,

(10)

with variables λ, µ.
We can compute at modest cost a lower bound to the optimal value of (9), and hence to

p?, by finding a dual feasible point for (10).
The optimality condition for x(k+1), the analytic center of the inequalities

f0(x
(i)) + g

(i)T
0 (x− x(i)) ≤ f

(i)
best, i = 1, . . . , q,

f1(x
(i)) + g

(i)T
1 (x− x(i)) ≤ 0, i = q + 1, . . . , k,

cTi x ≤ di, i = 1, . . . ,m,

is

q∑
i=1

g
(i)
0

f
(i)
best − f0(x(i))− g

(i)T
0 (x(k+1) − x(i))

+
k∑

i=q+1

g
(i)
1

−f1(x(i))− g(i)T1 (x(k+1) − x(i))
+

m∑
i=1

ci
di − cTi x(k+1)

= 0.

(11)

Let τi = 1/(f
(i)
best − f0(x(i)) − g

(i)T
0 (x(k+1) − x(i))) for i = 1, . . . , q. Comparing (11) with

the equality constraint in (10), we can construct a dual feasible point by taking

λi =

{
τi/1

T τ for i = 1, . . . , q

1/(−f1(x(i))− g(i)T1 (x(k+1) − x(i)))(1T τ) for i = q + 1, . . . , k,

µi = 1/(di − cTi x(k+1))(1T τ) i = 1, . . . ,m.

6

Using these values of λ and µ, we conclude that

p? ≥ l(k+1),

where l(k+1) =
∑q

i=1 λi(f0(x
(i))− g(i)T0 x(i)) +

∑k
i=q+1 λi(f1(x

(i))− g(i)T1 x(i))− dTµ.

Let l
(k)
best be the best lower bound found after k iterations. The ACCPM algorithm can

be stopped once the gap f
(k)
best − l

(k)
best is less than a desired value ε > 0. This guarantees that

x(k) is, at most, ε-suboptimal.

5 Convergence proof

In this section we give a convergence proof for ACCPM, adapted from Ye [Ye97, Chap. 6].
We take the initial polyhedron as the unit box, centered at the origin, with unit length sides,
i.e., the initial set of linear inequalities is

−(1/2)1 � z � (1/2)1,

so the first analytic center is x(1) = 0. We assume the target set X contains a ball with
radius r < 1/2, and show that the number of iterations is no more than a constant times
n2/r2.

Assuming the algorithm has not terminated, the set of inequalities after k iterations is

−(1/2)1 � z � (1/2)1, aTi z ≤ bi, i = 1, . . . , k. (12)

We assume the cuts are neutral, so bi = aTi x
(i) for i = 1, . . . , k. Without loss of generality

we normalize the vectors ai so that ‖ai‖2 = 1. We will let φk : Rn → R be the logarithmic
barrier function associated with the inequalities (12),

φk(z) = −
n∑

i=1

log(1/2 + zi)−
n∑

i=1

log(1/2− zi)−
k∑

i=1

log(bi − aTi x).

The iterate x(k+1) is the minimizer of this logarithmic barrier function.
Since the algorithm has not terminated, the polyhedron Pk defined by (12) still contains

the target set X, and hence also a ball with radius r and (unknown) center xc. We have
(−1/2 + r)1 � xc � (1/2 − r)1, and the slacks of the inequalities aTi z ≤ bi evaluated at xc
also exceed r:

bi − sup
‖v‖2≤1

aTi (xc + rv) = bi − aTi xc − r‖ai‖2 = bi − aTi xc − r ≥ 0.

Therefore φk(xc) ≤ −(2n+ k) log r and, since x(k) is the minimizer of φk,

φk(x(k)) = inf
z
φk(z) ≤ φk(xc) ≤ (2n+ k) log(1/r). (13)

7

We can also derive a lower bound on φk(x(k)) by noting that the functions φj are self-
concordant for j = 1, . . . , k. Using the inequality (9.48), [BV04, p.502], we have

φj(x) ≥ φj(x
(j)) +

√
(x− x(j))THj(x− x(j))− log(1 +

√
(x− x(j))THj(x− x(j)))

for all x ∈ domφj, where Hj is the Hessian of φj at x(j). If we apply this inequality to φk−1
we obtain

φk(x(k)) = inf
x
φk(x)

= inf
x

(
φk−1(x)− log(−aTk (x− x(k−1)))

)
≥ inf

v

(
φk−1(x

(k−1)) +
√
vTHk−1v − log(1 +

√
vTHk−1v)− log(−aTk v)

)
.

By setting the gradient of the righthand side equal to zero, we find that it is minimized at

v̂ = − 1 +
√

5

2
√
aTkH

−1
k−1ak

H−1k−1ak,

which yields

φk(x(k)) ≥ φk−1(x
(k−1)) +

√
v̂THk−1v̂ − log(1 +

√
v̂THk−1v̂)− log(−aTk v̂)

= φ(k−1)(x
k−1) + 0.1744− 1

2
log(aTkH

−1
k−1ak)

≥ 0.1744k − 1

2

k∑
i=1

log(aTi H
−1
i−1ai) + 2n log 2

≥ 0.1744k − k

2
log

(
1

k

k∑
i=1

aTi H
−1
i−1ai

)
+ 2n log 2

≥ −k
2

log

(
1

k

k∑
i=1

aTi H
−1
i−1ai

)
+ 2n log 2 (14)

because φ0(x
(0)) = 2n log 2. We can further bound the second term on the righthand side by

noting that

Hi = 4diag(1 + 2x(i))−2 + 4diag(1− 2x(i))−2 +
i∑

j=1

1

(bj − aTj x(i))2
aja

T
j � I +

1

n

i∑
j=1

aja
T
j

because −(1/2)1 ≺ x(i) ≺ (1/2)1 and

bi − aTi x(k) = aTi (x(i−1) − x(k)) ≤ ‖ai‖2‖x(i−1) − x(k)‖2 ≤
√
n.

Define B0 = I and Bi = I + (1/n)
∑i

j=1 aja
T
j for i ≥ 1. Then

n log(1 + k/n2) = n log(TrBk/n) ≥ log detBk

8

= log detBk−1 + log(1 +
1

n
aTkB

−1
k−1ak)

≥ log detBk−1 +
1

2n
aTkB

−1
k−1ak

≥ 1

2n

k∑
i=1

aTi B
−1
i−1ai.

(The second inequality follows from the fact that aTkB
−1
k−1ak ≤ 1, and log(1 +x) ≥ (log 2)x ≥

x/2 for 0 ≤ x ≤ 1.) Therefore

k∑
i=1

aTi H
−1
i−1ai ≤

k∑
i=1

aTi B
−1
i−1ai ≤ 2n2 log(1 +

k

n2
),

and we can simplify (14) as

φk(x(k)) ≥ −k
2

log

(
2

log(1 + k/n2)

k/n2

)
+ 2n log 2

= (2n− k

2
) log 2 +

k

2
log

(
k/n2

log(1 + k/n2)

)
. (15)

Combining this lower bound with the upper bound (13) we find

−k
2

log 2 +
k

2
log

(
k/n2

log(1 + k/n2)

)
≤ k log(1/r) + 2n log(1/(2r)). (16)

From this it is clear that the algorithm terminates after a finite k: since the ratio (k/n2)/ log(1+
k/n2) goes to infinity, the left hand side grows faster than linearly as k increases.

We can derive an explicit bound on k as follows. Let α(r) be the solution of the nonlinear
equation

α/ log(1 + α) = 1/(2r4).

Suppose k > max{2n, n2α(r)}. Then we have a contradiction in (16):

k log(1/(2r2)) ≤ −k
2

log
√

2 +
k

2
log

(
k/n2

log(1 + k/n2)

)
≤ k log(1/r) + 2n log(1/(2r)),

i.e., k log(1/(2r)) ≤ 2n log(1/(2r)). We conclude that

max{2n, n2α(r)}

is an upper bound on the number of iterations.

9

6 Numerical examples

We consider the problem of minimizing a piecewise linear function:

minimize f(x) = maxi=1,...,m(aTi x+ bi),

with variable x ∈ Rn. The particular problem instance we use to illustrate the different
methods has n = 20 variables and m = 100 terms, with problem data ai and bi generated
from a unit normal distribution. Its optimal value (which is easily computed via linear
programming) is f ? ≈ 1.1.

6.1 Basic ACCPM

We use the basic ACCPM algorithm described in §1, with the infeasible start Newton method
used to carry out the centering steps. We take P0 to be the unit box {z | ‖z‖∞ ≤ 1}. We
keep track of fbest, the best objective value found, and use this to generate deep objective
cuts. Figure 1 shows convergence of f (k) − f ?, which is nearly linear (on a semi-log scale).

Figure 2 shows the convergence of the true suboptimality f
(k)
best−f ? (which is not available

as the algorithm is running), along with the upper bound on suboptimality f
(k)
best−l

(k)
best (which

is available as the algorithm runs).

Figure 3 shows f
(k)
best − f ? versus the cumulative number of Newton steps required by

the infeasible start Newton method in the centering steps. This plots shows that around 10
Newton steps are needed, on average, to carry out the centering. We can see that as the
algorithm progresses (and P(k) gets small), there is a small increase in the number of Newton
steps required to achieve the same factor increase in accuracy.

6.2 ACCPM with constraint dropping

We illustrate ACCPM with constraint dropping, keeping at most N = 3n constraints, using
the constraint dropping scheme described in §3. Figure 4 shows convergence of f (k) − f ?

with and without constraint dropping. The plots show that keeping only 3n constraints has
almost no effect on the progress of the algorithm, as measured in iterations. At k = 200
iterations, the pruned polyhedron has 60 constraints, whereas the unpruned polyhedron has
240 constraints.

The number of flops per Newton step is, to first order, mkn
2, where mk is the number

of constraints at iteration k, so the total flop count of iteration k can be estimated as
Nkmkn

2, where Nk is the number of Newton steps required in iteration k. Figure 5 shows
the convergence of f

(k)
best − f ? versus the (estimated) cummulative flop count.

10

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

f−
fm

in

Figure 1: The value of f (k)− f? versus iteration number k, for the basic ACCPM.

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

k

fbest−fstar

fbest−lbest

Figure 2: The value of f
(k)
best − f? (in blue) and the value of f

(k)
best − l

(k)
best (in red)

versus iteration number k for the basic ACCPM.

11

0 500 1000 1500 2000 2500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

fa
ll
−

fm
in

Figure 3: The value of f
(k)
best − f? versus the cumulative number of Newton steps,

for the basic ACCPM.

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

f−
fm

in

no dropping

keep 3n

Figure 4: The value of f (k) − f? versus iteration number k in the case where all
constraints are kept (blue) and only 3n constraints are kept (red).

12

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

flop count

fb
e
s
t−

fm
in

no dropping

keep 3n

Figure 5: The value of f
(k)
best − f? versus estimated cummulative flop count in the

case where all constraints are kept (blue) and only 3n constraints are kept (red).

6.3 Epigraph ACCPM

Figure 6 shows convergence of f (k) − f ? for the epigraph ACCPM. (See §6 of the EE364b
notes Localization and Cutting-Plane Methods for details.) Epigraph ACCPM requires only
50 iterations to reach the same accuracy that was reached by basic ACCPM in 200 iterations.

The convergence of f
(k)
best− f ? versus the cumulative number of Newton steps is shown in

figure 7. We see that in epigraph ACCPM the average number of Newton steps per iteration
is a bit higher than for basic ACCPM, but a substantial advantage remains.

13

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

f−
fm

in

Figure 6: The value of f (k)− f? versus iteration number k, for epigraph ACCPM.

0 200 400 600 800 1000 1200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

fa
ll
−

fm
in

Figure 7: The value of f
(k)
best − f? versus the cumulative number of Newton steps,

for epigraph ACCPM.

14

References

[AV95] D. Atkinson and P. Vaidya. A cutting plane algorithm for convex programming
that uses analytic centers. Mathematical Programming, 69:1–43, 1995.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[GSM99] J. Goffin and F. Sharifi-Mokhtarian. Using the primal-dual infeasible newton
method in the analytic center method for problems defined by deep cutting planes.
Journal of Optimization Theory and Applications, 101:35–58, April 1999.

[GV93] J. Goffin and J. Vial. On the computation of weighted analytic centers and dual
ellipsoids with the projective algorithm. Mathematical Programming, 60:81–92,
1993.

[Nes95] Y. Nesterov. Cutting-plane algorithms from analytic centers: efficiency estimates.
Mathematical Programming, 69:149–176, 1995.

[Ye97] Yinyu Ye. Complexity analysis of the analytic center cutting plane method that
uses multiple cuts. Mathematical Programming, 78:85–104, 1997.

15

