Branch and Bound Methods

e basic ideas and attributes
e unconstrained nonconvex optimization

e mixed convex-Boolean optimization

EE364b, Stanford University

Methods for nonconvex optimization problems

e convex optimization methods are (roughly) always global, always fast
e for general nonconvex problems, we have to give up one

¢ local optimization methods are fast, but need not find global solution
(and even when they do, cannot certify it)

e global optimization methods find global solution (and certify it), but
are not always fast (indeed, are often slow)

EE364b, Stanford University 1

Branch and bound algorithms

e methods for global optimization for nonconvex problems

e nonheuristic

— maintain provable lower and upper bounds on global objective value
— terminate with certificate proving e-suboptimality

e often slow; exponential worst case performance

e but (with luck) can (sometimes) work well

EE364b, Stanford University

Basic idea

e rely on two subroutines that (efficiently) compute a lower and an upper
bound on the optimal value over a given region

— upper bound can be found by choosing any point in the region, or by
a local optimization method
— lower bound can be found from convex relaxation, duality, Lipschitz

or other bounds, . . .

e basic idea:

— partition feasible set into convex sets, and find lower/upper bounds

for each
— form global lower and upper bounds; quit if close enough

— else, refine partition and repeat

EE364b, Stanford University

Unconstrained nonconvex minimization

goal: find global minimum of function f : R"™ — R, over an
m-~dimensional rectangle Q;ni¢, to within some prescribed accuracy ¢

e for any rectangle Q C Qjinit, we define @,,;,(9Q) = infco f(x)

e global optimal value is f* = @i (Qinit)

EE364b, Stanford University

Lower and upper bound functions

e we'll use lower and upper bound functions ®;;, and ®,,, that satisfy, for
any rectangle Q C OQipit,

(I)lb(Q) S (I)min(Q) S (I)ub<Q)

e bounds must become tight as rectangles shrink:
Ve >0d6 >0 VQ g Qinit, size(Q) S o — (I)ub(Q) — (I)lb(Q) S €
where size(Q) is diameter (length of longest edge of Q)

e to be practical, ®,,,(Q) and ®1,,(Q) should be cheap to compute

EE364b, Stanford University 5

Branch and bound algorithm

1. compute lower and upper bounds on f*

o set [y = P, (Qinit) and Uy = Py (Qinit)
e terminate if Uy — L1 < e

2. partition (split) Qinjt into two rectangles Qi = 91 U Qo
3. compute P,(9;) and ®,1,(Q;), 1 = 1,2
4. update lower and upper bounds on f*

e update lower bound: Lo = min{®,(Q;), ®1,(9Q2)}
e update upper bound: Uy = min{®,,(91), Pup(92)}
o terminate if Uy — Lo < €

5. refine partition, by splitting Q7 or Q5, and repeat steps 3 and 4

EE364b, Stanford University

e can assume w.l.o.g. U; is nonincreasing, L; is nondecreasing

e at each step we have a partially developed binary tree; children
correspond to the subrectangles formed by splitting the parent rectangle

e |eaves give the current partition of Qjpit

e need rules for choosing, at each step

— which rectangle to split
— which edge (variable) to split
— where to split (what value of variable)

e some good rules: split rectangle with smallest lower bound, along
longest edge, in half

EE364b, Stanford University 7

Example

partitioned rectangle in R2, and associated binary tree, after 3 iterations

EE364b, Stanford University

Pruning

e can eliminate or prune any rectangle Q in tree with ®,(Q) > Uy

— every point in rectangle is worse than current upper bound
— hence cannot be optimal

e does not affect algorithm, but does reduce storage requirements

e can track progress of algorithm via

— total pruned (or unpruned) volume
— number of pruned (or unpruned) leaves in partition

EE364b, Stanford University

Convergence analysis

e number of rectangles in partition Ly, is k (without pruning)

e total volume of these rectangles is vol(Qinit), SO

I(Qini
min vol(Q) < vol(Qunit)
QeLy k

e so for k large, at least one rectangle has small volume
e need to show that small volume implies small size
e this will imply that one rectangle has U — L small

e hence U, — Ly, is small

EE364b, Stanford University

10

Bounding condition number

e condition number of rectangle Q = [l1,uy| X -+ X [l uy] is

max; (’UJZ — lz)

cond(Q) =

mlnz(uz — lz)
e if we split rectangle along longest edge, we have
cond(Q) < max{cond(Qinit), 2}

for any rectangle in partition

e other rules (e.g., cycling over variables) also guarantee bound on

cond(Q)

EE364b, Stanford University

11

Small volume implies small size

vol(Q = JJ(w — &) > max(u; — 1) (min(ui—li))m_l

.))
)

(2 size(Q))"™ 2size(Q)\ "
cond(Q)m—1 = (COHd(Q))

and so size(Q) < (1/2)vol(Q)Y™cond(Q)

therefore if cond(Q) is bounded and vol(Q) is small, size(Q) is small

EE364b, Stanford University

12

Mixed Boolean-convex problem
minimize fo(z, 2)
subject to fz()< i=1,....m
o x € R? is called continuous variable
e 2 € {0,1}" is called Boolean variable
e fo,...,fn are convex in x and z
e optimal value denoted p*

e for each fixed z € {0,1}", reduced problem (with variable x) is convex

EE364b, Stanford University

13

Solution methods

e brute force: solve convex problem for each of the 2" possible values of
ze€{0,1}"

— possible for n < 15 or so, but not n > 20

e branch and bound

— in worst case, we end up solving all 2™ convex problems
— hope that branch and bound will actually work much better

EE364b, Stanford University

14

Lower bound via convex relaxation

convex relaxation

minimize fo(z, 2)
subject to fi(z,2) <0, i=1,....m
OSZjSl, jzl,...,n

e convex with (continuous) variables x and z, so easily solved

e optimal value (denoted L) is lower bound on p*, optimal value of
original problem

e [can be 400 (which implies original problem infeasible)

EE364b, Stanford University

15

Upper bounds

e can find an upper bound (denoted U;) on p* several ways
e simplest method: round each relaxed Boolean variable 27 to 0 or 1

e more sophisticated method: round each Boolean variable, then solve the
resulting convex problem in x

e randomized method:

— generate random z; € {0,1}, with Prob(z; = 1) = 2
— (optionally, solve for x again)
— take best result out of some number of samples

e upper bound can be 400 (method failed to produce a feasible point)

o if Uy — L1 <€ we can quit

EE364b, Stanford University 16

Branching

e pick any index k, and form two subproblems

o first problem:

e second problem:

EE364b, Stanford University

minimize
subject to

minimize
subject to

fo(z, 2)

fZ(xa’Z)S()a 7’:17'
Zj € 0,1}, j=1,
Rl — 0

fO(xvz)

fz(xvz)goa 2_17'
z; €40,1}, =1,
e —

17

e each of these is a Boolean-convex problem, with n — 1 Boolean variables

e optimal value of original problem is the smaller of the optimal values of
the two subproblems

e can solve convex relaxations of subproblems to obtain lower and upper
bounds on optimal values

EE364b, Stanford University 18

New bounds from subproblems

e let L, U be lower, upper bounds for z; = 0

e let L,U be lower, upper bounds for z;, = 1

e min{L,L} > L,

e can assume w.l.o.g. that min{U,U} < U,

e thus, we have new bounds on p*:

EE364b, Stanford University

Ly =min{L, L} < p* < Uy = min{U, U}

19

Branch and bound algorithm

e continue to form binary tree by splitting, relaxing, calculating bounds on
subproblems

e convergence proof is trivial: cannot go more than 2™ steps before U = L
e can prune nodes with L excceding current Uy
e common strategy is to pick a node with smallest L

e can pick variable to split several ways

— ‘least ambivalent’: choose k£ for which z* =0 or 1, with largest
Lagrange multiplier
— 'most ambivalent’: choose k for which |z} — 1/2| is minimum

EE364b, Stanford University 20

Small example

nodes show lower and upper bounds for three-variable Boolean LP

[—0.143, 00)

EE364b, Stanford University

21

Minimum cardinality example

find sparsest x satisfying linear inequalities

minimize card(z)
subject to Az <b

equivalent to mixed Boolean-LP:
minimize 17z
subjectto L;z; <z; <U;z, 1=1,....n
Ax < b
ZZ'E{O,l}, 1=1,...,n

with variables £ and z and lower and upper bounds on x, L and U

EE364b, Stanford University

22

Bounding «»

L; is optimal value of LP

minimize x;
subject to Ax <b

U, is optimal value of LP

maximize x;
subject to Ax <b

solve 2n LPs to get all bounds

if L; >0 or U,; <0, we can just set z; =1

EE364b, Stanford University

23

Relaxation problem

e relaxed problem is
minimize 17z
subject to LZZz < T; < Uz-zz-, 1= 1, oo

Az <b
0<z<1, i=1,....n

e (assuming L; < 0, U; > 0) equivalent to

minimize >0, ((1/Us) (%) + + (=1/Li)(z4)-)
subject to Az <b

e objective is asymmetric weighted ¢1-norm

EE364b, Stanford University

24

A few more details

e relaxed problem is well known heuristic for finding a sparse solution, so
we take card(x*) as our upper bound

e for lower bound, we can replace L from LP with [L], since card(z) is
integer valued

e at each iteration, split node with lowest lower bound

e split most ambivalent variable

EE364b, Stanford University

25

Small example

e random problem with 30 variables, 100 constraints

o 230~ 10

e takes 8 iterations to find a point with globally minimum cardinality (19)
e but, takes 124 iterations to prove minimum cardinality is 19

e requires 309 LP solves (including 60 to calculate lower and upper
bounds on each variable)

EE364b, Stanford University 26

Algorithm progress

tree after 3 iterations (top left), 5 iterations (top right), 10 iterations
(bottom left), and 124 iterations (bottom right)

EE364b, Stanford University

27

EE364b, Stanford University

Global lower and upper bounds

20

H
=

cardinality

14-

ngl
pund)

| | |
% 20 40 60 100 120

Iteration

28

Portion of non-pruned

sparsity patterns

H
QL

101k

portion of non-pruned Boolean values

|
0 20 40 60

iteration

EE364b, Stanford University

\ \
80 100 120

29

Number of active leaves in tree

60 T T T T T T

number of leaves on tree

0 20 40 60 80 100 120
iteration

EE364b, Stanford University

30

Larger example

e random problem with 50 variables, 100 constraints
o 2°0 ~ 1010

e took 3665 iterations (1300 to find an optimal point)
e minimum cardinality 31

e same example as used in £1-norm methods lecture

— basic ¢1-norm relaxation (1 LP) gives x with card(x) = 44
— iterated weighted ¢1-norm heuristic (4 LPs) gives x with
card(x) = 36

EE364b, Stanford University

31

Global lower and upper bounds

40 T T T T T T T
351 b
230 1
©
=
=
| -
T 25 b
O
20 h
— upper bound
— lower bound
- - ceil(lower bound)
150 560 1600 15;00 2600 25100 3600 35100 4000
iteration

EE364b, Stanford University

32

Portion of non-pruned sparsity patterns

100

107 :

102 :

[
e
w
T
Il

104 E

portion of non-pruned Boolean values

0 500 1000 1500 2000 2500 3000 3500 4000
iteration

EE364b, Stanford University

Number of active leaves in tree

1600

1400

=
N
o
o

1000

800

600

number of leaves on tree
N
o
(@)

EE364b, Stanford University

T

T

T

T

T

500

1000

1500

2600
iteration

2500

3000

3500

4000

34

Even larger example

e random problem with 200 variables, 400 constraints
o 2200 ~ 1.6.10%Y

e we quit after 10000 iterations (50 hours on a single processor machine
with 1 GB of RAM)

e only know that optimal cardinality is between 135 and 179

e but have reduced number of possible sparsity patterns by factor of 10%?

EE364b, Stanford University 35

Global lower and upper bounds

190

180

170

160

150

140

cardinality

130
120
110

100

EE364b, Stanford University

L = L
— upper bound
— lower bound 1
- - ceil(lower bound)
0 1600 2600 3600 4600
iteration

5000

36

Portion of non-pruned sparsity patterns

100

107
1072
103
104
10
106
107
108
10°

1010

10-11

portion of non-pruned Boolean values

=

o
-
N

1000 2000 3000 4000 5000
iteration

o

EE364b, Stanford University

Number

1000

800

600

400

number of leaves on tree

200

EE364b, Stanford University

of active leaves in tree

T

T

T

1000

2600 3600
iteration

4000

5000

38

