Branch and Bound Methods

- basic ideas and attributes
- unconstrained nonconvex optimization
- mixed convex-Boolean optimization

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
- local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
- global optimization methods find global solution (and certify it), but are not always fast (indeed, are often slow)

Branch and bound algorithms

- methods for global optimization for nonconvex problems
- nonheuristic
- maintain provable lower and upper bounds on global objective value
- terminate with certificate proving ϵ-suboptimality
- often slow; exponential worst case performance
- but (with luck) can (sometimes) work well

Basic idea

- rely on two subroutines that (efficiently) compute a lower and an upper bound on the optimal value over a given region
- upper bound can be found by choosing any point in the region, or by a local optimization method
- lower bound can be found from convex relaxation, duality, Lipschitz or other bounds, . . .
- basic idea:
- partition feasible set into convex sets, and find lower/upper bounds for each
- form global lower and upper bounds; quit if close enough
- else, refine partition and repeat

Unconstrained nonconvex minimization

goal: find global minimum of function $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$, over an m-dimensional rectangle $\mathcal{Q}_{\text {init }}$, to within some prescribed accuracy ϵ

- for any rectangle $\mathcal{Q} \subseteq \mathcal{Q}_{\text {init }}$, we define $\Phi_{\min }(\mathcal{Q})=\inf _{x \in \mathcal{Q}} f(x)$
- global optimal value is $f^{\star}=\Phi_{\min }\left(\mathcal{Q}_{\text {init }}\right)$

Lower and upper bound functions

- we'll use lower and upper bound functions Φ_{lb} and Φ_{ub}, that satisfy, for any rectangle $\mathcal{Q} \subseteq \mathcal{Q}_{\text {init }}$,

$$
\Phi_{\mathrm{lb}}(\mathcal{Q}) \leq \Phi_{\min }(\mathcal{Q}) \leq \Phi_{\mathrm{ub}}(\mathcal{Q})
$$

- bounds must become tight as rectangles shrink:

$$
\forall \epsilon>0 \exists \delta>0 \forall \mathcal{Q} \subseteq \mathcal{Q}_{\mathrm{init}}, \quad \operatorname{size}(\mathcal{Q}) \leq \delta \Longrightarrow \Phi_{\mathrm{ub}}(\mathcal{Q})-\Phi_{\mathrm{lb}}(\mathcal{Q}) \leq \epsilon
$$

where $\operatorname{size}(\mathcal{Q})$ is diameter (length of longest edge of \mathcal{Q})

- to be practical, $\Phi_{\mathrm{ub}}(\mathcal{Q})$ and $\Phi_{\mathrm{lb}}(\mathcal{Q})$ should be cheap to compute

Branch and bound algorithm

1. compute lower and upper bounds on f^{\star}

- set $L_{1}=\Phi_{\mathrm{lb}}\left(\mathcal{Q}_{\mathrm{init}}\right)$ and $U_{1}=\Phi_{\mathrm{ub}}\left(\mathcal{Q}_{\text {init }}\right)$
- terminate if $U_{1}-L_{1} \leq \epsilon$

2. partition (split) $\mathcal{Q}_{\text {init }}$ into two rectangles $\mathcal{Q}_{\text {init }}=\mathcal{Q}_{1} \cup \mathcal{Q}_{2}$
3. compute $\Phi_{\mathrm{lb}}\left(\mathcal{Q}_{i}\right)$ and $\Phi_{\mathrm{ub}}\left(\mathcal{Q}_{i}\right), i=1,2$
4. update lower and upper bounds on f^{\star}

- update lower bound: $L_{2}=\min \left\{\Phi_{\mathrm{lb}}\left(\mathcal{Q}_{1}\right), \Phi_{\mathrm{lb}}\left(\mathcal{Q}_{2}\right)\right\}$
- update upper bound: $U_{2}=\min \left\{\Phi_{\mathrm{ub}}\left(\mathcal{Q}_{1}\right), \Phi_{\mathrm{ub}}\left(\mathcal{Q}_{2}\right)\right\}$
- terminate if $U_{2}-L_{2} \leq \epsilon$

5. refine partition, by splitting \mathcal{Q}_{1} or \mathcal{Q}_{2}, and repeat steps 3 and 4

- can assume w.l.o.g. U_{i} is nonincreasing, L_{i} is nondecreasing
- at each step we have a partially developed binary tree; children correspond to the subrectangles formed by splitting the parent rectangle
- leaves give the current partition of $\mathcal{Q}_{\text {init }}$
- need rules for choosing, at each step
- which rectangle to split
- which edge (variable) to split
- where to split (what value of variable)
- some good rules: split rectangle with smallest lower bound, along longest edge, in half

Example

partitioned rectangle in \mathbf{R}^{2}, and associated binary tree, after 3 iterations

Pruning

- can eliminate or prune any rectangle \mathcal{Q} in tree with $\Phi_{1 \mathrm{~b}}(\mathcal{Q})>U_{k}$
- every point in rectangle is worse than current upper bound
- hence cannot be optimal
- does not affect algorithm, but does reduce storage requirements
- can track progress of algorithm via
- total pruned (or unpruned) volume
- number of pruned (or unpruned) leaves in partition

Convergence analysis

- number of rectangles in partition \mathcal{L}_{k} is k (without pruning)
- total volume of these rectangles is $\operatorname{vol}\left(\mathcal{Q}_{\text {init }}\right)$, so

$$
\min _{\mathcal{Q} \in \mathcal{L}_{k}} \operatorname{vol}(\mathcal{Q}) \leq \frac{\operatorname{vol}\left(\mathcal{Q}_{\text {init }}\right)}{k}
$$

- so for k large, at least one rectangle has small volume
- need to show that small volume implies small size
- this will imply that one rectangle has $U-L$ small
- hence $U_{k}-L_{k}$ is small

Bounding condition number

- condition number of rectangle $\mathcal{Q}=\left[l_{1}, u_{1}\right] \times \cdots \times\left[l_{n}, u_{n}\right]$ is

$$
\operatorname{cond}(\mathcal{Q})=\frac{\max _{i}\left(u_{i}-l_{i}\right)}{\min _{i}\left(u_{i}-l_{i}\right)}
$$

- if we split rectangle along longest edge, we have

$$
\operatorname{cond}(\mathcal{Q}) \leq \max \left\{\operatorname{cond}\left(\mathcal{Q}_{\text {init }}\right), 2\right\}
$$

for any rectangle in partition

- other rules (e.g., cycling over variables) also guarantee bound on $\operatorname{cond}(\mathcal{Q})$

Small volume implies small size

$$
\begin{aligned}
\operatorname{vol}(\mathcal{Q}) & =\prod_{i}\left(u_{i}-l_{i}\right) \geq \max _{i}\left(u_{i}-l_{i}\right)\left(\min _{i}\left(u_{i}-l_{i}\right)\right)^{m-1} \\
& =\frac{(2 \operatorname{size}(\mathcal{Q}))^{m}}{\operatorname{cond}(\mathcal{Q})^{m-1}} \geq\left(\frac{2 \operatorname{size}(\mathcal{Q})}{\operatorname{cond}(\mathcal{Q})}\right)^{m}
\end{aligned}
$$

and so $\operatorname{size}(\mathcal{Q}) \leq(1 / 2) \operatorname{vol}(\mathcal{Q})^{1 / m} \operatorname{cond}(\mathcal{Q})$
therefore if $\operatorname{cond}(\mathcal{Q})$ is bounded and $\operatorname{vol}(\mathcal{Q})$ is small, $\operatorname{size}(\mathcal{Q})$ is small

Mixed Boolean-convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, z) \\
\text { subject to } & f_{i}(x, z) \leq 0, \quad i=1, \ldots, m \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, n
\end{array}
$$

- $x \in \mathbf{R}^{p}$ is called continuous variable
- $z \in\{0,1\}^{n}$ is called Boolean variable
- f_{0}, \ldots, f_{n} are convex in x and z
- optimal value denoted p^{\star}
- for each fixed $z \in\{0,1\}^{n}$, reduced problem (with variable x) is convex

Solution methods

- brute force: solve convex problem for each of the 2^{n} possible values of $z \in\{0,1\}^{n}$
- possible for $n \leq 15$ or so, but not $n \geq 20$
- branch and bound
- in worst case, we end up solving all 2^{n} convex problems
- hope that branch and bound will actually work much better

Lower bound via convex relaxation

convex relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, z) \\
\text { subject to } & f_{i}(x, z) \leq 0, \quad i=1, \ldots, m \\
& 0 \leq z_{j} \leq 1, \quad j=1, \ldots, n
\end{array}
$$

- convex with (continuous) variables x and z, so easily solved
- optimal value (denoted L_{1}) is lower bound on p^{\star}, optimal value of original problem
- L_{1} can be $+\infty$ (which implies original problem infeasible)

Upper bounds

- can find an upper bound (denoted U_{1}) on p^{\star} several ways
- simplest method: round each relaxed Boolean variable z_{i}^{\star} to 0 or 1
- more sophisticated method: round each Boolean variable, then solve the resulting convex problem in x
- randomized method:
- generate random $z_{i} \in\{0,1\}$, with $\operatorname{Prob}\left(z_{i}=1\right)=z_{i}^{\star}$
- (optionally, solve for x again)
- take best result out of some number of samples
- upper bound can be $+\infty$ (method failed to produce a feasible point)
- if $U_{1}-L_{1} \leq \epsilon$ we can quit

Branching

- pick any index k, and form two subproblems
- first problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, z) \\
\text { subject to } & f_{i}(x, z) \leq 0, \quad i=1, \ldots, m \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, n \\
& z_{k}=0
\end{array}
$$

- second problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x, z) \\
\text { subject to } & f_{i}(x, z) \leq 0, \quad i=1, \ldots, m \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, n \\
& z_{k}=1
\end{array}
$$

- each of these is a Boolean-convex problem, with $n-1$ Boolean variables
- optimal value of original problem is the smaller of the optimal values of the two subproblems
- can solve convex relaxations of subproblems to obtain lower and upper bounds on optimal values

New bounds from subproblems

- let \tilde{L}, \tilde{U} be lower, upper bounds for $z_{k}=0$
- let \bar{L}, \bar{U} be lower, upper bounds for $z_{k}=1$
- $\min \{\tilde{L}, \bar{L}\} \geq L_{1}$
- can assume w.l.o.g. that $\min \{\tilde{U}, \bar{U}\} \leq U_{1}$
- thus, we have new bounds on p^{\star} :

$$
L_{2}=\min \{\tilde{L}, \bar{L}\} \leq p^{\star} \leq U_{2}=\min \{\tilde{U}, \bar{U}\}
$$

Branch and bound algorithm

- continue to form binary tree by splitting, relaxing, calculating bounds on subproblems
- convergence proof is trivial: cannot go more than 2^{n} steps before $U=L$
- can prune nodes with L excceding current U_{k}
- common strategy is to pick a node with smallest L
- can pick variable to split several ways
- 'least ambivalent': choose k for which $z^{\star}=0$ or 1 , with largest Lagrange multiplier
- 'most ambivalent': choose k for which $\left|z_{k}^{\star}-1 / 2\right|$ is minimum

Small example

nodes show lower and upper bounds for three-variable Boolean LP

Minimum cardinality example

find sparsest x satisfying linear inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{card}(x) \\
\text { subject to } & A x \preceq b
\end{array}
$$

equivalent to mixed Boolean-LP:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} z \\
\text { subject to } & L_{i} z_{i} \leq x_{i} \leq U_{i} z_{i}, \quad i=1, \ldots, n \\
& A x \preceq b \\
& z_{i} \in\{0,1\}, \quad i=1, \ldots, n
\end{array}
$$

with variables x and z and lower and upper bounds on x, L and U

Bounding x

- L_{i} is optimal value of LP

$$
\begin{array}{ll}
\operatorname{minimize} & x_{i} \\
\text { subject to } & A x \preceq b
\end{array}
$$

- U_{i} is optimal value of LP

$$
\begin{array}{ll}
\operatorname{maximize} & x_{i} \\
\text { subject to } & A x \preceq b
\end{array}
$$

- solve $2 n$ LPs to get all bounds
- if $L_{i}>0$ or $U_{i}<0$, we can just set $z_{i}=1$

Relaxation problem

- relaxed problem is

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} z \\
\text { subject to } & L_{i} z_{i} \leq x_{i} \leq U_{i} z_{i}, \quad i=1, \ldots, n \\
& A x \preceq b \\
& 0 \leq z_{i} \leq 1, \quad i=1, \ldots, n
\end{array}
$$

- (assuming $L_{i}<0, U_{i}>0$) equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n}\left(\left(1 / U_{i}\right)\left(x_{i}\right)_{+}+\left(-1 / L_{i}\right)\left(x_{i}\right)_{-}\right) \\
\text {subject to } & A x \preceq b
\end{array}
$$

- objective is asymmetric weighted ℓ_{1}-norm

A few more details

- relaxed problem is well known heuristic for finding a sparse solution, so we take $\operatorname{card}\left(x^{\star}\right)$ as our upper bound
- for lower bound, we can replace L from LP with $\lceil L\rceil$, since $\operatorname{card}(x)$ is integer valued
- at each iteration, split node with lowest lower bound
- split most ambivalent variable

Small example

- random problem with 30 variables, 100 constraints
- $2^{30} \approx 10^{9}$
- takes 8 iterations to find a point with globally minimum cardinality (19)
- but, takes 124 iterations to prove minimum cardinality is 19
- requires 309 LP solves (including 60 to calculate lower and upper bounds on each variable)

Algorithm progress

tree after 3 iterations (top left), 5 iterations (top right), 10 iterations (bottom left), and 124 iterations (bottom right)

Global lower and upper bounds

Portion of non-pruned sparsity patterns

Number of active leaves in tree

Larger example

- random problem with 50 variables, 100 constraints
- $2^{50} \approx 10^{15}$
- took 3665 iterations (1300 to find an optimal point)
- minimum cardinality 31
- same example as used in ℓ_{1}-norm methods lecture
- basic ℓ_{1}-norm relaxation (1 LP) gives x with $\operatorname{card}(x)=44$
- iterated weighted ℓ_{1}-norm heuristic (4LPs) gives x with $\operatorname{card}(x)=36$

Global lower and upper bounds

Portion of non-pruned sparsity patterns

Number of active leaves in tree

Even larger example

- random problem with 200 variables, 400 constraints
- $2^{200} \approx 1.6 \cdot 10^{60}$
- we quit after 10000 iterations (50 hours on a single processor machine with 1 GB of RAM)
- only know that optimal cardinality is between 135 and 179
- but have reduced number of possible sparsity patterns by factor of 10^{12}

Global lower and upper bounds

Portion of non-pruned sparsity patterns

Number of active leaves in tree

