
Branch and Bound Methods

• basic ideas and attributes

• unconstrained nonconvex optimization

• mixed convex-Boolean optimization

EE364b, Stanford University

Methods for nonconvex optimization problems

• convex optimization methods are (roughly) always global, always fast

• for general nonconvex problems, we have to give up one

• local optimization methods are fast, but need not find global solution
(and even when they do, cannot certify it)

• global optimization methods find global solution (and certify it), but
are not always fast (indeed, are often slow)

EE364b, Stanford University 1

Branch and bound algorithms

• methods for global optimization for nonconvex problems

• nonheuristic

– maintain provable lower and upper bounds on global objective value
– terminate with certificate proving ǫ-suboptimality

• often slow; exponential worst case performance

• but (with luck) can (sometimes) work well

EE364b, Stanford University 2

Basic idea

• rely on two subroutines that (efficiently) compute a lower and an upper
bound on the optimal value over a given region

– upper bound can be found by choosing any point in the region, or by
a local optimization method

– lower bound can be found from convex relaxation, duality, Lipschitz
or other bounds, . . .

• basic idea:

– partition feasible set into convex sets, and find lower/upper bounds
for each

– form global lower and upper bounds; quit if close enough
– else, refine partition and repeat

EE364b, Stanford University 3

Unconstrained nonconvex minimization

goal: find global minimum of function f : Rm → R, over an
m-dimensional rectangle Qinit, to within some prescribed accuracy ǫ

• for any rectangle Q ⊆ Qinit, we define Φmin(Q) = infx∈Q f(x)

• global optimal value is f⋆ = Φmin(Qinit)

EE364b, Stanford University 4

Lower and upper bound functions

• we’ll use lower and upper bound functions Φlb and Φub, that satisfy, for
any rectangle Q ⊆ Qinit,

Φlb(Q) ≤ Φmin(Q) ≤ Φub(Q)

• bounds must become tight as rectangles shrink:

∀ǫ > 0 ∃δ > 0 ∀Q ⊆ Qinit, size(Q) ≤ δ =⇒ Φub(Q)− Φlb(Q) ≤ ǫ

where size(Q) is diameter (length of longest edge of Q)

• to be practical, Φub(Q) and Φlb(Q) should be cheap to compute

EE364b, Stanford University 5

Branch and bound algorithm

1. compute lower and upper bounds on f⋆

• set L1 = Φlb(Qinit) and U1 = Φub(Qinit)
• terminate if U1 − L1 ≤ ǫ

2. partition (split) Qinit into two rectangles Qinit = Q1 ∪ Q2

3. compute Φlb(Qi) and Φub(Qi), i = 1, 2

4. update lower and upper bounds on f⋆

• update lower bound: L2 = min{Φlb(Q1),Φlb(Q2)}
• update upper bound: U2 = min{Φub(Q1),Φub(Q2)}
• terminate if U2 − L2 ≤ ǫ

5. refine partition, by splitting Q1 or Q2, and repeat steps 3 and 4

EE364b, Stanford University 6

• can assume w.l.o.g. Ui is nonincreasing, Li is nondecreasing

• at each step we have a partially developed binary tree; children
correspond to the subrectangles formed by splitting the parent rectangle

• leaves give the current partition of Qinit

• need rules for choosing, at each step

– which rectangle to split
– which edge (variable) to split
– where to split (what value of variable)

• some good rules: split rectangle with smallest lower bound, along
longest edge, in half

EE364b, Stanford University 7

Example

partitioned rectangle in R2, and associated binary tree, after 3 iterations

EE364b, Stanford University 8

Pruning

• can eliminate or prune any rectangle Q in tree with Φlb(Q) > Uk

– every point in rectangle is worse than current upper bound
– hence cannot be optimal

• does not affect algorithm, but does reduce storage requirements

• can track progress of algorithm via

– total pruned (or unpruned) volume
– number of pruned (or unpruned) leaves in partition

EE364b, Stanford University 9

Convergence analysis

• number of rectangles in partition Lk is k (without pruning)

• total volume of these rectangles is vol(Qinit), so

min
Q∈Lk

vol(Q) ≤
vol(Qinit)

k

• so for k large, at least one rectangle has small volume

• need to show that small volume implies small size

• this will imply that one rectangle has U − L small

• hence Uk − Lk is small

EE364b, Stanford University 10

Bounding condition number

• condition number of rectangle Q = [l1, u1]× · · · × [ln, un] is

cond(Q) =
maxi(ui − li)

mini(ui − li)

• if we split rectangle along longest edge, we have

cond(Q) ≤ max{cond(Qinit), 2}

for any rectangle in partition

• other rules (e.g., cycling over variables) also guarantee bound on
cond(Q)

EE364b, Stanford University 11

Small volume implies small size

vol(Q) =
∏

i

(ui − li) ≥ max
i

(ui − li)
(

min
i
(ui − li)

)m−1

=
(2 size(Q))

m

cond(Q)m−1
≥

(

2 size(Q)

cond(Q)

)m

and so size(Q) ≤ (1/2)vol(Q)1/mcond(Q)

therefore if cond(Q) is bounded and vol(Q) is small, size(Q) is small

EE364b, Stanford University 12

Mixed Boolean-convex problem

minimize f0(x, z)
subject to fi(x, z) ≤ 0, i = 1, . . . ,m

zj ∈ {0, 1}, j = 1, . . . , n

• x ∈ Rp is called continuous variable

• z ∈ {0, 1}n is called Boolean variable

• f0, . . . , fn are convex in x and z

• optimal value denoted p⋆

• for each fixed z ∈ {0, 1}n, reduced problem (with variable x) is convex

EE364b, Stanford University 13

Solution methods

• brute force: solve convex problem for each of the 2n possible values of
z ∈ {0, 1}n

– possible for n ≤ 15 or so, but not n ≥ 20

• branch and bound

– in worst case, we end up solving all 2n convex problems
– hope that branch and bound will actually work much better

EE364b, Stanford University 14

Lower bound via convex relaxation

convex relaxation

minimize f0(x, z)
subject to fi(x, z) ≤ 0, i = 1, . . . ,m

0 ≤ zj ≤ 1, j = 1, . . . , n

• convex with (continuous) variables x and z, so easily solved

• optimal value (denoted L1) is lower bound on p⋆, optimal value of
original problem

• L1 can be +∞ (which implies original problem infeasible)

EE364b, Stanford University 15

Upper bounds

• can find an upper bound (denoted U1) on p⋆ several ways

• simplest method: round each relaxed Boolean variable z⋆i to 0 or 1

• more sophisticated method: round each Boolean variable, then solve the
resulting convex problem in x

• randomized method:

– generate random zi ∈ {0, 1}, with Prob(zi = 1) = z⋆i
– (optionally, solve for x again)
– take best result out of some number of samples

• upper bound can be +∞ (method failed to produce a feasible point)

• if U1 − L1 ≤ ǫ we can quit

EE364b, Stanford University 16

Branching

• pick any index k, and form two subproblems

• first problem:

minimize f0(x, z)
subject to fi(x, z) ≤ 0, i = 1, . . . ,m

zj ∈ {0, 1}, j = 1, . . . , n
zk = 0

• second problem:

minimize f0(x, z)
subject to fi(x, z) ≤ 0, i = 1, . . . ,m

zj ∈ {0, 1}, j = 1, . . . , n
zk = 1

EE364b, Stanford University 17

• each of these is a Boolean-convex problem, with n− 1 Boolean variables

• optimal value of original problem is the smaller of the optimal values of
the two subproblems

• can solve convex relaxations of subproblems to obtain lower and upper
bounds on optimal values

EE364b, Stanford University 18

New bounds from subproblems

• let L̃, Ũ be lower, upper bounds for zk = 0

• let L̄, Ū be lower, upper bounds for zk = 1

• min{L̃, L̄} ≥ L1

• can assume w.l.o.g. that min{Ũ , Ū} ≤ U1

• thus, we have new bounds on p⋆:

L2 = min{L̃, L̄} ≤ p⋆ ≤ U2 = min{Ũ , Ū}

EE364b, Stanford University 19

Branch and bound algorithm

• continue to form binary tree by splitting, relaxing, calculating bounds on
subproblems

• convergence proof is trivial: cannot go more than 2n steps before U = L

• can prune nodes with L excceding current Uk

• common strategy is to pick a node with smallest L

• can pick variable to split several ways

– ‘least ambivalent’: choose k for which z⋆ = 0 or 1, with largest
Lagrange multiplier

– ‘most ambivalent’: choose k for which |z⋆k − 1/2| is minimum

EE364b, Stanford University 20

Small example

nodes show lower and upper bounds for three-variable Boolean LP

[−0.143,∞)

[∞,∞] [0.2,∞]

[∞,∞] [1, 1]

z1 = 0 z1 = 1

z2 = 0 z2 = 1

EE364b, Stanford University 21

Minimum cardinality example

find sparsest x satisfying linear inequalities

minimize card(x)
subject to Ax � b

equivalent to mixed Boolean-LP:

minimize 1
Tz

subject to Lizi ≤ xi ≤ Uizi, i = 1, . . . , n
Ax � b
zi ∈ {0, 1}, i = 1, . . . , n

with variables x and z and lower and upper bounds on x, L and U

EE364b, Stanford University 22

Bounding x

• Li is optimal value of LP

minimize xi

subject to Ax � b

• Ui is optimal value of LP

maximize xi

subject to Ax � b

• solve 2n LPs to get all bounds

• if Li > 0 or Ui < 0, we can just set zi = 1

EE364b, Stanford University 23

Relaxation problem

• relaxed problem is

minimize 1
Tz

subject to Lizi ≤ xi ≤ Uizi, i = 1, . . . , n
Ax � b
0 ≤ zi ≤ 1, i = 1, . . . , n

• (assuming Li < 0, Ui > 0) equivalent to

minimize
∑n

i=1
((1/Ui)(xi)+ + (−1/Li)(xi)−)

subject to Ax � b

• objective is asymmetric weighted ℓ1-norm

EE364b, Stanford University 24

A few more details

• relaxed problem is well known heuristic for finding a sparse solution, so
we take card(x⋆) as our upper bound

• for lower bound, we can replace L from LP with ⌈L⌉, since card(x) is
integer valued

• at each iteration, split node with lowest lower bound

• split most ambivalent variable

EE364b, Stanford University 25

Small example

• random problem with 30 variables, 100 constraints

• 230 ≈ 109

• takes 8 iterations to find a point with globally minimum cardinality (19)

• but, takes 124 iterations to prove minimum cardinality is 19

• requires 309 LP solves (including 60 to calculate lower and upper
bounds on each variable)

EE364b, Stanford University 26

Algorithm progress

tree after 3 iterations (top left), 5 iterations (top right), 10 iterations
(bottom left), and 124 iterations (bottom right)

EE364b, Stanford University 27

Global lower and upper bounds

0 20 40 60 80 100 120
12

14

16

18

20

iteration

ca
rd
in
al
it
y

upper boundlower boundceil(lower bound)

EE364b, Stanford University 28

Portion of non-pruned sparsity patterns

0 20 40 60 80 100 120
10-2

10-1

100

iteration

p
or
ti
on

of
n
on

-p
ru
n
ed

B
o
ol
ea
n
va
lu
es

EE364b, Stanford University 29

Number of active leaves in tree

0 20 40 60 80 100 120
0

10

20

30

40

50

60

iteration

n
u
m
b
er

of
le
av
es

on
tr
ee

EE364b, Stanford University 30

Larger example

• random problem with 50 variables, 100 constraints

• 250 ≈ 1015

• took 3665 iterations (1300 to find an optimal point)

• minimum cardinality 31

• same example as used in ℓ1-norm methods lecture

– basic ℓ1-norm relaxation (1 LP) gives x with card(x) = 44
– iterated weighted ℓ1-norm heuristic (4 LPs) gives x with

card(x) = 36

EE364b, Stanford University 31

Global lower and upper bounds

0 500 1000 1500 2000 2500 3000 3500 4000
15

20

25

30

35

40

iteration

ca
rd
in
al
it
y

upper bound
lower bound
ceil(lower bound)

EE364b, Stanford University 32

Portion of non-pruned sparsity patterns

0 500 1000 1500 2000 2500 3000 3500 4000
10-5

10-4

10-3

10-2

10-1

100

iteration

p
or
ti
on

of
n
on

-p
ru
n
ed

B
o
ol
ea
n
va
lu
es

EE364b, Stanford University 33

Number of active leaves in tree

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400

1600

iteration

n
u
m
b
er

of
le
av
es

on
tr
ee

EE364b, Stanford University 34

Even larger example

• random problem with 200 variables, 400 constraints

• 2200 ≈ 1.6 · 1060

• we quit after 10000 iterations (50 hours on a single processor machine
with 1 GB of RAM)

• only know that optimal cardinality is between 135 and 179

• but have reduced number of possible sparsity patterns by factor of 1012

EE364b, Stanford University 35

Global lower and upper bounds

0 1000 2000 3000 4000 5000
100

110

120

130

140

150

160

170

180

190

iteration

ca
rd
in
al
it
y

upper bound
lower bound
ceil(lower bound)

EE364b, Stanford University 36

Portion of non-pruned sparsity patterns

0 1000 2000 3000 4000 5000
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

iteration

p
or
ti
on

of
n
on

-p
ru
n
ed

B
o
ol
ea
n
va
lu
es

EE364b, Stanford University 37

Number of active leaves in tree

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

iteration

n
u
m
b
er

of
le
av
es

on
tr
ee

EE364b, Stanford University 38

