Branch and Bound Methods

- basic ideas and attributes
- unconstrained nonconvex optimization
- mixed convex-Boolean optimization

EE364b, Stanford University

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
- **local optimization methods** are fast, but need not find global solution (and even when they do, cannot certify it)
- **global optimization methods** find global solution (and certify it), but are not always fast (indeed, are often slow)

Branch and bound algorithms

- methods for **global** optimization for nonconvex problems
- nonheuristic
 - maintain provable lower and upper bounds on global objective value
 - terminate with certificate proving ϵ -suboptimality
- often slow; exponential worst case performance
- but (with luck) can (sometimes) work well

Basic idea

- rely on two subroutines that (efficiently) compute a lower and an upper bound on the optimal value over a given region
 - upper bound can be found by choosing any point in the region, or by a local optimization method
 - lower bound can be found from convex relaxation, duality, Lipschitz or other bounds, . . .
- basic idea:
 - partition feasible set into convex sets, and find lower/upper bounds for each
 - form global lower and upper bounds; quit if close enough
 - else, refine partition and repeat

Unconstrained nonconvex minimization

goal: find global minimum of function $f : \mathbf{R}^m \to \mathbf{R}$, over an *m*-dimensional rectangle \mathcal{Q}_{init} , to within some prescribed accuracy ϵ

- for any rectangle $Q \subseteq Q_{init}$, we define $\Phi_{\min}(Q) = \inf_{x \in Q} f(x)$
- global optimal value is $f^{\star} = \Phi_{\min}(\mathcal{Q}_{init})$

Lower and upper bound functions

• we'll use lower and upper bound functions Φ_{lb} and Φ_{ub} , that satisfy, for any rectangle $Q \subseteq Q_{init}$,

$$\Phi_{\rm lb}(\mathcal{Q}) \leq \Phi_{\rm min}(\mathcal{Q}) \leq \Phi_{\rm ub}(\mathcal{Q})$$

• bounds must become tight as rectangles shrink:

 $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall \mathcal{Q} \subseteq \mathcal{Q}_{\text{init}}, \; \; \mathsf{size}(\mathcal{Q}) \leq \delta \Longrightarrow \Phi_{\text{ub}}(\mathcal{Q}) - \Phi_{\text{lb}}(\mathcal{Q}) \leq \epsilon$

where size(Q) is diameter (length of longest edge of Q)

• to be practical, $\Phi_{ub}(\mathcal{Q})$ and $\Phi_{lb}(\mathcal{Q})$ should be cheap to compute

Branch and bound algorithm

- 1. compute lower and upper bounds on f^\star
 - set $L_1 = \Phi_{\text{lb}}(\mathcal{Q}_{\text{init}})$ and $U_1 = \Phi_{\text{ub}}(\mathcal{Q}_{\text{init}})$
 - terminate if $U_1 L_1 \leq \epsilon$
- 2. partition (split) Q_{init} into two rectangles $Q_{init} = Q_1 \cup Q_2$
- 3. compute $\Phi_{
 m lb}(\mathcal{Q}_i)$ and $\Phi_{
 m ub}(\mathcal{Q}_i)$, i = 1, 2
- 4. update lower and upper bounds on f^{\star}
 - update lower bound: $L_2 = \min\{\Phi_{lb}(Q_1), \Phi_{lb}(Q_2)\}$
 - update upper bound: $U_2 = \min\{\Phi_{ub}(Q_1), \Phi_{ub}(Q_2)\}$
 - terminate if $U_2 L_2 \leq \epsilon$
- 5. refine partition, by splitting \mathcal{Q}_1 or \mathcal{Q}_2 , and repeat steps 3 and 4

- can assume w.l.o.g. U_i is nonincreasing, L_i is nondecreasing
- at each step we have a partially developed binary tree; children correspond to the subrectangles formed by splitting the parent rectangle
- leaves give the current partition of $\mathcal{Q}_{\mathrm{init}}$
- need rules for choosing, at each step
 - which rectangle to split
 - which edge (variable) to split
 - where to split (what value of variable)
- some good rules: split rectangle with smallest lower bound, along longest edge, in half

Example

partitioned rectangle in \mathbf{R}^2 , and associated binary tree, after 3 iterations

Pruning

- can eliminate or **prune** any rectangle Q in tree with $\Phi_{lb}(Q) > U_k$
 - every point in rectangle is worse than current upper bound
 - hence cannot be optimal
- does not affect algorithm, but does reduce storage requirements
- can track progress of algorithm via
 - total pruned (or unpruned) volume
 - number of pruned (or unpruned) leaves in partition

Convergence analysis

- number of rectangles in partition \mathcal{L}_k is k (without pruning)
- total volume of these rectangles is $\operatorname{vol}(\mathcal{Q}_{\operatorname{init}})$, so

$$\min_{\mathcal{Q}\in\mathcal{L}_k} \operatorname{vol}(\mathcal{Q}) \le \frac{\operatorname{vol}(\mathcal{Q}_{\operatorname{init}})}{k}$$

- $\bullet\,$ so for k large, at least one rectangle has small volume
- need to show that small volume implies small size
- this will imply that one rectangle has U L small
- hence $U_k L_k$ is small

Bounding condition number

• condition number of rectangle $Q = [l_1, u_1] \times \cdots \times [l_n, u_n]$ is

$$\operatorname{cond}(\mathcal{Q}) = \frac{\max_i(u_i - l_i)}{\min_i(u_i - l_i)}$$

• if we split rectangle along longest edge, we have

$$\operatorname{cond}(\mathcal{Q}) \leq \max\{\operatorname{cond}(\mathcal{Q}_{\operatorname{init}}), 2\}$$

for any rectangle in partition

• other rules (*e.g.*, cycling over variables) also guarantee bound on $\operatorname{cond}(\mathcal{Q})$

Small volume implies small size

$$\operatorname{vol}(\mathcal{Q}) = \prod_{i} (u_{i} - l_{i}) \ge \max_{i} (u_{i} - l_{i}) \left(\min_{i} (u_{i} - l_{i}) \right)^{m-1}$$
$$= \frac{(2\operatorname{size}(\mathcal{Q}))^{m}}{\operatorname{cond}(\mathcal{Q})^{m-1}} \ge \left(\frac{2\operatorname{size}(\mathcal{Q})}{\operatorname{cond}(\mathcal{Q})} \right)^{m}$$

and so size $(\mathcal{Q}) \leq (1/2) \operatorname{vol}(\mathcal{Q})^{1/m} \operatorname{cond}(\mathcal{Q})$

therefore if cond(Q) is bounded and vol(Q) is small, size(Q) is small

Mixed Boolean-convex problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x,z) \\ \mbox{subject to} & f_i(x,z) \leq 0, \quad i=1,\ldots,m \\ & z_j \in \{0,1\}, \quad j=1,\ldots,n \end{array}$$

- $x \in \mathbf{R}^p$ is called *continuous variable*
- $z \in \{0,1\}^n$ is called *Boolean variable*
- f_0, \ldots, f_n are convex in x and z
- optimal value denoted p^{\star}
- for each fixed $z \in \{0,1\}^n$, reduced problem (with variable x) is convex

Solution methods

- brute force: solve convex problem for each of the 2^n possible values of $z \in \{0,1\}^n$
 - possible for $n \leq 15$ or so, but not $n \geq 20$
- branch and bound
 - in worst case, we end up solving all 2^n convex problems
 - hope that branch and bound will actually work much better

Lower bound via convex relaxation

convex relaxation

$$\begin{array}{ll} \text{minimize} & f_0(x,z) \\ \text{subject to} & f_i(x,z) \leq 0, \quad i=1,\ldots,m \\ & 0 \leq z_j \leq 1, \quad j=1,\ldots,n \end{array}$$

- convex with (continuous) variables x and z, so easily solved
- optimal value (denoted L_1) is lower bound on p^* , optimal value of original problem
- L_1 can be $+\infty$ (which implies original problem infeasible)

Upper bounds

- can find an upper bound (denoted U_1) on p^* several ways
- simplest method: round each relaxed Boolean variable z_i^{\star} to 0 or 1
- $\bullet\,$ more sophisticated method: round each Boolean variable, then solve the resulting convex problem in x
- randomized method:
 - generate random $z_i \in \{0, 1\}$, with $\operatorname{Prob}(z_i = 1) = z_i^{\star}$
 - (optionally, solve for x again)
 - take best result out of some number of samples
- upper bound can be $+\infty$ (method failed to produce a feasible point)
- if $U_1 L_1 \leq \epsilon$ we can quit

Branching

- pick any index k, and form two subproblems
- first problem:

$$\begin{array}{ll} \mbox{minimize} & f_0(x,z) \\ \mbox{subject to} & f_i(x,z) \leq 0, \quad i=1,\ldots,m \\ & z_j \in \{0,1\}, \quad j=1,\ldots,n \\ & z_k=0 \end{array}$$

• second problem:

minimize
$$f_0(x, z)$$

subject to $f_i(x, z) \le 0$, $i = 1, \dots, m$
 $z_j \in \{0, 1\}$, $j = 1, \dots, n$
 $z_k = 1$

- each of these is a Boolean-convex problem, with n-1 Boolean variables
- optimal value of original problem is the smaller of the optimal values of the two subproblems
- can solve convex relaxations of subproblems to obtain lower and upper bounds on optimal values

New bounds from subproblems

- let \tilde{L}, \tilde{U} be lower, upper bounds for $z_k = 0$
- let \bar{L}, \bar{U} be lower, upper bounds for $z_k = 1$
- $\min\{\tilde{L}, \bar{L}\} \ge L_1$
- can assume w.l.o.g. that $\min\{\tilde{U}, \bar{U}\} \leq U_1$
- thus, we have new bounds on p^\star :

$$L_2 = \min\{\tilde{L}, \bar{L}\} \le p^* \le U_2 = \min\{\tilde{U}, \bar{U}\}$$

Branch and bound algorithm

- continue to form binary tree by splitting, relaxing, calculating bounds on subproblems
- convergence proof is trivial: cannot go more than 2^n steps before U = L
- can prune nodes with L exceeding current U_k
- common strategy is to pick a node with smallest L
- can pick variable to split several ways
 - 'least ambivalent': choose k for which $z^{\star}=0$ or 1, with largest Lagrange multiplier
 - 'most ambivalent': choose k for which $|z_k^{\star} 1/2|$ is minimum

Small example

nodes show lower and upper bounds for three-variable Boolean LP

Minimum cardinality example

find sparsest x satisfying linear inequalities

 $\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & Ax \preceq b \end{array}$

equivalent to mixed Boolean-LP:

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z\\ \text{subject to} & L_i z_i \leq x_i \leq U_i z_i, \quad i=1,\ldots,n\\ & Ax \preceq b\\ & z_i \in \{0,1\}, \quad i=1,\ldots,n \end{array}$$

with variables x and z and lower and upper bounds on x, L and U

Bounding x

• L_i is optimal value of LP

 $\begin{array}{ll} \text{minimize} & x_i \\ \text{subject to} & Ax \preceq b \end{array}$

• U_i is optimal value of LP

 $\begin{array}{ll} \text{maximize} & x_i \\ \text{subject to} & Ax \preceq b \end{array}$

- solve 2n LPs to get all bounds
- if $L_i > 0$ or $U_i < 0$, we can just set $z_i = 1$

EE364b, Stanford University

Relaxation problem

• relaxed problem is

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z\\ \text{subject to} & L_i z_i \leq x_i \leq U_i z_i, \quad i=1,\ldots,n\\ & Ax \preceq b\\ & 0 \leq z_i \leq 1, \quad i=1,\ldots,n \end{array}$$

• (assuming $L_i < 0$, $U_i > 0$) equivalent to

minimize
$$\sum_{i=1}^{n} \left((1/U_i)(x_i)_+ + (-1/L_i)(x_i)_- \right)$$

subject to $Ax \leq b$

• objective is asymmetric weighted ℓ_1 -norm

A few more details

- relaxed problem is well known heuristic for finding a sparse solution, so we take $card(x^*)$ as our upper bound
- for lower bound, we can replace L from LP with $\lceil L\rceil$, since $\mathbf{card}(x)$ is integer valued
- at each iteration, split node with lowest lower bound
- split most ambivalent variable

Small example

- random problem with 30 variables, 100 constraints
- $2^{30} \approx 10^9$
- takes 8 iterations to find a point with globally minimum cardinality (19)
- but, takes 124 iterations to **prove** minimum cardinality is 19
- requires 309 LP solves (including 60 to calculate lower and upper bounds on each variable)

Algorithm progress

tree after 3 iterations (top left), 5 iterations (top right), 10 iterations (bottom left), and 124 iterations (bottom right)

Global lower and upper bounds

Portion of non-pruned sparsity patterns

Number of active leaves in tree

Larger example

- random problem with 50 variables, 100 constraints
- $2^{50} \approx 10^{15}$
- took 3665 iterations (1300 to find an optimal point)
- minimum cardinality 31
- same example as used in ℓ_1 -norm methods lecture
 - basic ℓ_1 -norm relaxation (1 LP) gives x with card(x) = 44
 - iterated weighted ℓ_1 -norm heuristic (4 LPs) gives x with card(x) = 36

Global lower and upper bounds

Portion of non-pruned sparsity patterns

Number of active leaves in tree

Even larger example

- random problem with 200 variables, 400 constraints
- $2^{200} \approx 1.6 \cdot 10^{60}$
- we quit after 10000 iterations (50 hours on a single processor machine with 1 GB of RAM)
- only know that optimal cardinality is between 135 and 179
- but have reduced number of possible sparsity patterns by factor of 10^{12}

Global lower and upper bounds

Portion of non-pruned sparsity patterns

EE364b, Stanford University

Number of active leaves in tree

