
Conjugate Gradient Method

• direct and indirect methods

• positive definite linear systems

• Krylov sequence

• derivation of the Conjugate Gradient Method

• spectral analysis of Krylov sequence

• preconditioning

EE364b, Stanford University Prof. Mert Pilanci updated: May 5, 2022

Three classes of methods for linear equations

methods to solve linear system Ax = b, A ∈ Rn×n

• dense direct (factor-solve methods)

– runtime depends only on size; independent of data, structure, or
sparsity

– work well for n up to a few thousand

• sparse direct (factor-solve methods)

– runtime depends on size, sparsity pattern; (almost) independent of
data

– can work well for n up to 104 or 105 (or more)
– requires good heuristic for ordering

EE364b, Stanford University 1

• indirect (iterative methods)

– runtime depends on data, size, sparsity, required accuracy
– requires tuning, preconditioning, . . .
– good choice in many cases; only choice for n = 106 or larger

EE364b, Stanford University 2

Symmetric positive definite linear systems

SPD system of equations

Ax = b, A ∈ Rn×n, A = AT � 0

examples

• Newton/interior-point search direction: ∇2φ(x)∆x = −∇φ(x)

• least-squares normal equations: (ATA)x = AT b

• regularized least-squares: (ATA+ µI)x = AT b

• minimization of convex quadratic function (1/2)xTAx− bTx

• solving (discretized) elliptic PDE (e.g., Poisson equation)

EE364b, Stanford University 3

• analysis of resistor circuit: Gv = i

– v is node voltage (vector), i is (given) source current
– G is circuit conductance matrix

Gij =

{
total conductance incident on node i i = j
−(conductance between nodes i and j) i 6= j

EE364b, Stanford University 4

CG overview

• proposed by Hestenes and Stiefel in 1952 (as direct method)

• solves SPD system Ax = b

– in theory (i.e., exact arithmetic) in n iterations
– each iteration requires a few inner products in Rn, and one

matrix-vector multiply z → Az

• for A dense, matrix-vector multiply z → Az costs n2, so total cost is
n3, same as direct methods

• get advantage over dense if matrix-vector multiply is cheaper than n2

• with roundoff error, CG can work poorly (or not at all)

• but for some A (and b), can get good approximate solution in � n
iterations

EE364b, Stanford University 5

Solution and error

• x? = A−1b is solution

• x? minimizes (convex function) f(x) = (1/2)xTAx− bTx

• ∇f(x) = Ax− b is gradient of f

• with f? = f(x?), we have

f(x)− f? = (1/2)xTAx− bTx− (1/2)x?TAx? + bTx?

= (1/2)(x− x?)TA(x− x?)
= (1/2)‖x− x?‖2A

i.e., f(x)− f? is half of squared A-norm of error x− x?

EE364b, Stanford University 6

• a relative measure (comparing x to 0):

τ =
f(x)− f?

f(0)− f?
=
‖x− x?‖2A
‖x?‖2A

(fraction of maximum possible reduction in f , compared to x = 0)

EE364b, Stanford University 7

Residual

• r = b−Ax is called the residual at x

• r = −∇f(x) = A(x? − x)

• in terms of r, we have

f(x)− f? = (1/2)(x− x?)TA(x− x?)
= (1/2)rTA−1r

= (1/2)‖r‖2A−1

• a commonly used measure of relative accuracy: η = ‖r‖/‖b‖

• τ ≤ κ(A)η2 (η is easily computable from x; τ is not)

EE364b, Stanford University 8

Krylov subspace

(a.k.a. controllability subspace)

Kk = span{b, Ab, . . . , Ak−1b}
= {p(A)b | p polynomial, deg p < k}

we define the Krylov sequence x(1), x(2), . . . as

x(k) = argmin
x∈Kk

f(x) = argmin
x∈Kk

‖x− x?‖2A

the CG algorithm (among others) generates the Krylov sequence

EE364b, Stanford University 9

Properties of Krylov sequence

• f(x(k+1)) ≤ f(x(k)) (but ‖r‖ can increase)

• x(n) = x? (i.e., x? ∈ Kn even when Kn 6= Rn)

• x(k) = pk(A)b, where pk is a polynomial with deg pk < k

• less obvious: there is a two-term recurrence

x(k+1) = x(k) + αkr
(k) + βk(x

(k) − x(k−1))

for some αk, βk (basis of CG algorithm)

EE364b, Stanford University 10

Cayley-Hamilton theorem

characteristic polynomial of A:

χ(s) = det(sI −A) = sn + α1s
n−1 + · · ·+ αn

by Caley-Hamilton theorem

χ(A) = An + α1A
n−1 + · · ·+ αnI = 0

and so

A−1 = −(1/αn)An−1 − (α1/αn)An−2 − · · · − (αn−1/αn)I

in particular, we see that x? = A−1b ∈ Kn

EE364b, Stanford University 11

Deriving the Conjugate Gradient Method

• suppose {d0, ..., dk−1} is an orthogonal basis for Kk under the A−inner
product, i.e., (di)

TAdj = 0∀i 6= j

• let x(k) =
∑k−1
i=0 αidi

f(x(k)) =
1

2
(x(k))TAx(k) − bTx(k)

=
1

2

(k−1∑
i=0

αidi
)
A
(k−1∑
i=0

αidi
)
− bT

(k−1∑
i=0

αidi
)

=
1

2

k−1∑
i=0

α2
i (di)

TAdi − αibTdi

• decomposable problem, optimal α∗i = bTdi/‖di‖2A ∀i

EE364b, Stanford University 12

Constructing the basis (slow)

• suppose {d0, ..., dk−1} is an orthogonal basis for Kk

• extend {d0, ..., dk−1} to a basis of Kk+1 using Gram-Schmidt procedure

dk = g −
k−1∑
j=0

dj
(dj)

TAg

(dj)TAdj

• where we can pick any g ∈ Kk+1 such that g /∈ Kk, e.g., g = Akb

• after constructing the basis, set x(k) =
∑k−1
j=0 α

∗
jdj =

∑k
j=0

bTdj
(dj)TAdj

dj

• Conjugate Gradient method constructs the basis online by picking
g := −∇f(x(k)) = b−Ax(k)

EE364b, Stanford University 13

Simplifying Gram-Schmidt procedure

• initialize at x(0) = 0

d0 = −∇f(x(k)) = b− Ax(0) = b

d1 = (b− Ax(1))− d0
(d0)TA(b−Ax(1))

(d0)TAd0

d2 = (b− Ax(2))− d1
(d1)TA(b−Ax(2))

(d1)TAd1
−d0

(d0)TA(b−Ax(2))

(d0)TAd0

d3 = (b− Ax(3))− d2
(d2)TA(b−Ax(3))

(d2)TAd3
−d1

(d1)TA(b−Ax(3))

(d1)TAd1
− d0

(d0)TA(b−Ax(3))

(d0)TAd0

...

• turns out red terms are zero due to orthogonality

EE364b, Stanford University 14

• since x(k) =
∑k
j=0α

∗
jdj we have x(k+1) = x(k) + α∗kdk

• we pick d0 = −∇f(x(0)) and for k = 1, ..., n− 1

dk = −∇f(x(k))−
k−1∑
j=0

dj
dTj A(−∇f(x(k)))

dTj Adj

• it holds that dTj ∇f(x(k)) = 0 and ∇f(x(j))T∇f(x(k)) = 0 ∀j < k

proof: we have dT0∇f(x(1)) = dT0 (Ax0︸︷︷︸
0

−b) + α∗0d
T
0Ad0 = 0 and

dTj ∇f(x(k+1)) = dTj (Ax(k) + αkdk − b) = dTj ∇f(x(k))− α∗k d
T
j Adk︸ ︷︷ ︸

0 for j 6= k

in addition span(d0, ..., dk) = span(∇f(x(0), ...,∇f(x(k)))

EE364b, Stanford University 15

Simplifying CG update

• finally, note that

∇f(x(j+1))−∇f(x(j)) = A(x(j) + α∗jdj)− b− (Ax(j) − b) = α∗jAdj

• simplify the basis update

dk = −∇f(x(k))−
k−1∑
j=0

dj
dTj A(−∇f(x(k)))

dTj Adj

= −∇f(x(k))−
k−1∑
j=0

dj
(∇f(x(j+1))−∇f(x(j)))T (−∇f(x(k)))

(∇f(x(j+1))−∇f(x(j)))Tdj

= −∇f(x(k))− dk−1
∇f(x(k))T (−∇f(x(k)))

(−∇f(x(k−1)))Tdk−1

EE364b, Stanford University 16

Final CG update rule

• CG algorithm simplifies to

dk = −∇f(x(k)) + dk−1
‖∇f(x(k))‖22
‖∇f(x(k−1))‖22

• x(k+1) = x(k) + α∗kdk where α∗ = arg minα f(xk + αdk) = bTdk
dT
k
Adk

since we have f(x(k−1))Tdk−1 = −‖∇f(x(k−1))‖22. Proof:

∇f(x(k))Tdk = ∇f(x(k))T
(
−∇f(x(k))− dk−1

∇f(x(k))T (−∇f(x(k)))

(−∇f(x(k−1)))Tdk−1

)
= −∇f(x(k))T∇f(x(k))

EE364b, Stanford University 17

Spectral analysis of Krylov sequence

• A = QΛQT , Q orthogonal, Λ = diag(λ1, . . . , λn)

• define y = QTx, b̄ = QT b, y? = QTx?

• in terms of y, we have

f(x) = f̄(y) = (1/2)xTQΛQTx− bTQQTx
= (1/2)yTΛy − b̄Ty

=

n∑
i=1

(
(1/2)λiy

2
i − b̄iyi

)
so y?i = b̄i/λi, f

? = −(1/2)
∑n
i=1 b̄

2
i/λi

EE364b, Stanford University 18

Krylov sequence in terms of y

y(k) = argmin
y∈K̄k

f̄(y), K̄k = span{b̄,Λb̄, . . . ,Λk−1b̄}

y
(k)
i = pk(λi)b̄i, deg pk < k

pk = argmin
deg p<k

n∑
i=1

b̄2i
(
(1/2)λip(λi)

2 − p(λi)
)

EE364b, Stanford University 19

f(x(k))− f? = f̄(y(k))− f?

= min
deg p<k

(1/2)

n∑
i=1

b̄2i
(λip(λi)− 1)2

λi

= min
deg p<k

(1/2)

n∑
i=1

ȳ?2i λi(λip(λi)− 1)2

= min
deg q≤k, q(0)=1

(1/2)

n∑
i=1

ȳ?2i λiq(λi)
2

= min
deg q≤k, q(0)=1

(1/2)

n∑
i=1

b̄2i
q(λi)

2

λi

EE364b, Stanford University 20

τk =
mindeg q≤k, q(0)=1

∑n
i=1 ȳ

?2
i λiq(λi)

2∑n
i=1 ȳ

?2
i λi

≤ min
deg q≤k, q(0)=1

(
max

i=1,...,n
q(λi)

2

)
• if there is a polynomial q of degree k, with q(0) = 1, that is small on

the spectrum of A, then f(x(k))− f? is small

• if eigenvalues are clustered in k groups, then y(k) is a good approximate
solution

• if solution x? is approximately a linear combination of k eigenvectors of
A, then y(k) is a good approximate solution

EE364b, Stanford University 21

A bound on convergence rate

• taking q as Chebyshev polynomial of degree k, that is small on interval
[λmin, λmax], we get

τk ≤
(√

κ− 1√
κ+ 1

)k
, κ = λmax/λmin

• convergence can be much faster than this, if spectrum of A is spread
but clustered

EE364b, Stanford University 22

Small example

A ∈ R7×7, spectrum shown as filled circles; p1, p2, p3, p4, and p7 shown

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

p
(x

)

EE364b, Stanford University 23

Convergence

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cgiter

et
a

EE364b, Stanford University 24

Residual convergence

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cgiter

re
lr

es

EE364b, Stanford University 25

Larger example

• solve Gv = i, resistor network with 105 nodes

• average node degree 10; around 106 nonzeros in G

• random topology with one grounded node

• nonzero branch conductances uniform on [0, 1]

• external current i uniform on [0, 1]

• sparse Cholesky factorization of G requires too much memory

EE364b, Stanford University 26

Residual convergence

0 10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

cgiter

re
lr

es

EE364b, Stanford University 27

CG algorithm

(follows C. T. Kelley)

x := 0, r := b, ρ0 := ‖r‖2

for k = 1, . . . , Nmax

quit if
√
ρk−1 ≤ ε‖b‖

if k = 1 then p := r; else p := r + (ρk−1/ρk−2)p
w := Ap
α := ρk−1/p

Tw
x := x+ αp
r := r − αw
ρk := ‖r‖2

EE364b, Stanford University 28

Efficient matrix-vector multiply

• sparse A

• structured (e.g., sparse) plus low rank

• products of easy-to-multiply matrices

• fast transforms (FFT, wavelet, . . .)

• inverses of lower/upper triangular (by forward/backward substitution)

• fast Gauss transform, for Aij = exp(−‖vi − vj‖2/σ2) (via multipole)

EE364b, Stanford University 29

Shifting

• suppose we have guess x̂ of solution x?

• we can solve Az = b−Ax̂ using CG, then get x? = x̂+ z

• in this case x(k) = x̂+ z(k) = argmin
x∈x̂+Kk

f(x)

(x̂+Kk is called shifted Krylov subspace)

• same as initializing CG alg with x := x̂, r := b−Ax

• good for ‘warm start’, i.e., solving Ax = b starting from a good initial
guess (e.g., the solution of another system Ãx = b̃, with A ≈ Ã, b ≈ b̃)

EE364b, Stanford University 30

Preconditioned conjugate gradient algorithm

• idea: apply CG after linear change of coordinates x = Ty, detT 6= 0

• use CG to solve TTATy = TT b; then set x? = T−1y?

• T or M = TTT is called preconditioner

• in naive implementation, each iteration requires multiplies by T and TT

(and A); also need to compute x? = T−1y? at end

• can re-arrange computation so each iteration requires one multiply by
M (and A), and no final solve x? = T−1y?

• called preconditioned conjugate gradient (PCG) algorithm

EE364b, Stanford University 31

Choice of preconditioner

• if spectrum of TTAT (which is the same as the spectrum of MA) is
clustered, PCG converges fast

• extreme case: M = A−1

• trade-off between enhanced convergence, and extra cost of
multiplication by M at each step

• goal is to find M that is cheap to multiply, and approximate inverse of
A (or at least has a more clustered spectrum than A)

EE364b, Stanford University 32

Some generic preconditioners

• diagonal: M = diag(1/A11, . . . , 1/Ann)

• incomplete/approximate Cholesky factorization: use M = Â−1, where
Â = L̂L̂T is an approximation of A with cheap Cholesky factorization

– compute Cholesky factorization of Â, Â = L̂L̂T

– at each iteration, compute Mz = L̂−T L̂−1z via forward/backward
substitution

• examples

– Â is central k-wide band of A
– L̂ obtained by sparse Cholesky factorization of A, ignoring small

elements in A, or refusing to create excessive fill-in

EE364b, Stanford University 33

Randomized preconditioning

• suppose A = HTH, for some H ∈ Rm×n and m� n

example: Hessian of a convex objective, e.g., least squares problem
argminx

1
2‖Hx− y‖

2
2 = argminx

1
2x
THTHx− xTy

• QR decomposition H = QR and the preconditioner T = R−1 is ideal
since TTAT = (HT)T (HT) = QTQ = I, whose condition number is 1

however, QR decomposition on H costs O(mn2) operations

• randomized preconditioner: let S ∈ Rs×m be a random matrix, e.g.,
i.i.d. ±1, and apply QR decomposition as SH = Q̃R̃. Set T = R̃−1

computational cost is O(sn2)+cost of forming the sketch SH

• S can be Randomized Hadamard Transform (O(mn log s))

EE364b, Stanford University 34

Preconditioned conjugate gradient

(with preconditioner M ≈ A−1 (hopefully))

x := 0, r := b−Ax0, p := r z := Mr, ρ1 := rTz

for k = 1, . . . , Nmax

quit if
√
ρk ≤ ε‖b‖2 or ‖r‖ ≤ ε‖b‖2

w := Ap
α := ρk

wTp

x := x+ αp
r := r − αw
z := Mr
ρk+1 := zTr
p := z +

ρk+1
ρk
p

EE364b, Stanford University 35

Larger example

residual convergence with and without diagonal preconditioning

0 10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

cgiter

re
lr

es

EE364b, Stanford University 36

The Fletcher-Reeves Method
CG can be adapted for arbitrary differentiable objectives:
set d0 = −∇f(x(0)) and

dk = −∇f(x(k)) + dk−1
‖∇f(x(k))‖22
‖∇f(x(k−1))‖22

x(k+1) = x(k) + α∗kdk where α∗ = arg min
α
f(xk + αdk)

• exact line searches are replaced by practical line search procedures

• termination criterion is typically ‖∇f(x(k))‖2 ≤ ε

• conjugacy of the search directions dk is only achieved approximately

hence, we may need to reset dk to −∇f(x(k)) periodically

EE364b, Stanford University 37

CG summary

• in theory (with exact arithmetic) converges to solution in n steps

– the bad news: due to numerical round-off errors, can take more than
n steps (or fail to converge)

– the good news: with luck (i.e., good spectrum of A), can get good
approximate solution in � n steps

• each step requires z → Az multiplication

– can exploit a variety of structure in A
– in many cases, never form or store the matrix A

• compared to direct (factor-solve) methods, CG is less reliable, data
dependent; often requires good (problem-dependent) preconditioner

• but, when it works, can solve extremely large systems

EE364b, Stanford University 38

