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Three classes of methods for linear equations

methods to solve linear system Az = b, A € R"*"

e dense direct (factor-solve methods)

— runtime depends only on size; independent of data, structure, or
sparsity
— work well for n up to a few thousand

e sparse direct (factor-solve methods)

— runtime depends on size, sparsity pattern; (almost) independent of

data
— can work well for n up to 10* or 10° (or more)
— requires good heuristic for ordering
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e indirect (iterative methods)

— runtime depends on data, size, sparsity, required accuracy
— requires tuning, preconditioning, . . .
— good choice in many cases; only choice for n = 10° or larger
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Symmetric positive definite linear systems

SPD system of equations

Az = b, A e R, A=AT =0

examples

e Newton/interior-point search direction: V?¢(z)Ax = —V¢(x)
e least-squares normal equations: (AT A)x = AT

e regularized least-squares: (AT A+ pul)x = ATb

e minimization of convex quadratic function (1/2)z1 Az — bl x

e solving (discretized) elliptic PDE (e.g., Poisson equation)
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e analysis of resistor circuit: Gv =1

— v is node voltage (vector), i is (given) source current
— (G is circuit conductance matrix

Q.. — total conductance incident on node 7 i =7
71 —(conductance between nodes i and j) i # j
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CG overview

e proposed by Hestenes and Stiefel in 1952 (as direct method)
e solves SPD system Ax = b

— in theory (i.e., exact arithmetic) in n iterations
— each iteration requires a few inner products in R", and one
matrix-vector multiply z — Az

e for A dense, matrix-vector multiply z — Az costs n?, so total cost is
n3, same as direct methods

e get advantage over dense if matrix-vector multiply is cheaper than n?
e with roundoff error, CG can work poorly (or not at all)

e but for some A (and b), can get good approximate solution in < n
iterations
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Solution and error
o 2* = A1b is solution
e * minimizes (convex function) f(z) = (1/2)z! Ax — bz
e Vf(x)=Ax — b is gradient of f
e with f* = f(z*), we have

flx)—f* = (1/2)z" Az —b'ax — (1/2)* Az* + b' 2*
= (1/2)(z — ") Az — 2¥)
= (1/2)]|z — 2*|%
i.e., f(x) — f* is half of squared A-norm of error z — z*
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e a relative measure (comparing x to 0):

fa) = =2
O

8

T =

(fraction of maximum possible reduction in f, compared to x = 0)
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Residual

e r =b— Ax is called the residual at z«

o 1= -Vf(x) = A" - )

e in terms of r, we have

fl@)=f = (1/2)(@ —2")" Az —27)

= (1/2)[Ir]%-
e a commonly used measure of relative accuracy: n = ||r||/||b||

o 7 < r(A)n? (n is easily computable from z; T is not)

EE364b, Stanford University



Krylov subspace

(a.k.a. controllability subspace)

K. = span{b, Ab,..., A* b}
= {p(A)b | p polynomial, degp < k}
we define the Krylov sequence =V, () ... as

k) — argmin f(x) = argmin ||z — 55*H124
xe]Ck mEICk;

the CG algorithm (among others) generates the Krylov sequence
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Properties of Krylov sequence
o f(zF+) < (™) (but ||| can increase)
o (" =2* (i.e., x* € K,, even when K,, # R")
o £(F) = p.(A)b, where py, is a polynomial with degpy < k
e less obvious: there is a two-term recurrence
2D = 2 4 qpr®) 4 By (2R — =)

for some ay, By (basis of CG algorithm)
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Cayley-Hamilton theorem

characteristic polynomial of A:
x(s) =det(s] —A)=s"+ 18" 1+ 4+ ay,
by Caley-Hamilton theorem
X(A) = A"+ A" P ol =0
and so
A = —(1/a) A" — (aq /o)A 2 — o — (p_1/an)]

in particular, we see that 2* = A='b € K,
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Deriving the Conjugate Gradient Method

e suppose {dg,...,dr_1} is an orthogonal basis for K, under the A—inner
product, i.e., (d;)? Ad; =0Vi # j

o let x(k) = Zf:_()l o d;

2
| kol k—1 k—1
= LS (S o) (T aa)
i=0 i=0 =0

k—1
1
— 5 Z Oz?(dz)TAdz — Oé@‘dez‘
1=0

e decomposable problem, optimal o = bl'd;/||d;||% Vi
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Constructing the basis (slow)

e suppose {dy,...,dr_1} is an orthogonal basis for ICj

e extend {dy,...,dr_1} to a basis of K1 using Gram-Schmidt procedure

— d:)1 Ag
]ZZ:O 7 (d;)T Ad,

e where we can pick any g € K41 such that g ¢ Ky, e.g., g = AFb

T
k bTd; o

e after constructing the basis, set z(*) = Z?;& azd; = ijo @7 A%
J J

e Conjugate Gradient method constructs the basis online by picking
g:=—Vf(z®)=b— Azx¥)
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Simplifying Gram-Schmidt procedure
e initialize at z(?) =0

do=—-Vf(z®)=b—- Az =p

(b — Am(l)) _ do(dO)TA(b—Aw(l))

dr = (do)TAdyg

I @y g @TAap-423) o @) Tap—a22))
dy = (b Az ) dy (d)T Adq do (dg) T Ady

(b — AR®Y _ g @)TAp=a2B3)) L @pTap-4s) g A@p-—as3)
ds = (b — Az™) — d (do)T Adg U a)Tad do =G Tad

e turns out red terms are zero due to orthogonality
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o since 2(M =% a*d; we have A+t = () 4 o4,

JOJ

o we pick dy = -V f(z®)and fork=1,...,n—1

k—1 k
dTA(=V f(z ™))
_ k
dy = =V f(zM) Ejd] A4,

e it holds that d?V f(z*)) = 0 and V f(aD)IV f(a™) =0 Vj < k

proof: we have d! V f(zM)) = dl'(Axg —b) + afidl Ady = 0 and
0

dI'V f(a D) = dT (Az™ + agdy — b) = dEV f(aW)) — af df Ady,

Oforj #k

in addition span(do, ..., ds) = span(V f(z®, ..., V f(z(?)))
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Simplifying CG update

e finally, note that

V(U t)) = Vf)) = AW + aidy) — b — (A2 — b) = afAd,

e simplify the basis update

d, = —Vfz®)—

= V") -

= —V/@") -
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TA(— (k)
§ FACTIE)
dT Ad,

x> .
I
= (-}

(Vf(@UTD) = V(W) (=V f(z*))
(Vf(aUtD) — V f(z0)))Td;

d;

Q.
I
o

V(@0 (=V f(a™))

O e L)
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Final CG update rule

e CG algorithm simplifies to

|V /(= *)]]3
IV £ (@E=D)|I3

dy = —Vfz®)+d_,

T
o pFtl) — (k) 4 ajd, where o™ = argming, f(z) + ady) = d%jsk

since we have f(z*=1)Td,_; = —||Vf(=*~1)||2. Proof:

Vf(a?(’“))T(—Vf(x““))))
(=V f(z*=1))Td)_

Vi) Tdy = V)T (=V ™) —di
= —ViE")VHED)
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Spectral analysis of Krylov sequence

o A=QAQ7", Q orthogonal, A = diag(\,...,\,)
o define y = QTx, b=QTbh, y* = QT z*
e in terms of y, we have

fl@)=fy) = (1/2)2"QAQ z —bv"QQ"x
= (1/2)y"Ay—b'y

= Z ((1/2))%%2 - Bz’yz’)

1=1

so yr =bi/Ni, [*=—(1/2) 37 b2/ N
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Krylov sequence in terms of y

y™) = argmin f(y),
yeky

K. = span{b, Ab, ..., A" 1b}

ngk) = pr(Ai)bi, degpr < k

n

pr = argmin
deg p<k i—1
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f(a:(k)) _
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min
deg g<k, q(0)=1

min
deg g<k, q(0)=1

—1)?

—1)°

(1/2) Zg:%q@ ?

- QQ()\i)Z
(1/2) 3 B

1=1
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__ Dildeggzi, g(0)=1 S U Ng(N)?
k — —

min ( max q()\i)z)

deg q<k, q(0)=1 \:=1,...,n

IA

e if there is a polynomial ¢ of degree k, with ¢(0) = 1, that is small on
the spectrum of A, then f(:c(k)) — f* is small

e if eigenvalues are clustered in k groups, then y*®) is a good approximate
solution

e if solution x™ is approximately a linear combination of k£ eigenvectors of
A, then y(*) is a good approximate solution
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A bound on convergence rate

e taking g as Chebyshev polynomial of degree k, that is small on interval
P\mina )\max]; we get

<<\/E_1

k
W) , K = Amax/ Amin

e convergence can be much faster than this, if spectrum of A is spread
but clustered
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Small example

A € R™7, spectrum shown as filled circles: py, ps, 3, pa, and p7 shown

2 T T T T
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Residual convergence
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Larger example

e solve Gv = i, resistor network with 10° nodes

e average node degree 10; around 10° nonzeros in G
e random topology with one grounded node

e nonzero branch conductances uniform on |0, 1]

e external current ¢ uniform on [0, 1]

e sparse Cholesky factorization of GG requires too much memory
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CG algorithm

(follows C. T. Kelley)

. L lel12
r:=0, 7r:=0b po:=|r|
for k=1,..., Nmax

quit if \/pr—1 < €[|b]|

if k=1then p:=1; else p:=r+ (pr_1/pr_2)p

w = Ap

a:= pyp_1/p’w
=+ ap
ri=7r—Qaw

pr = |Ir®

EE364b, Stanford University
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Efficient matrix-vector multiply

e sparse A

e structured (e.g., sparse) plus low rank

e products of easy-to-multiply matrices

e fast transforms (FFT, wavelet, . . .)

e inverses of lower/upper triangular (by forward /backward substitution)

e fast Gauss transform, for A;; = exp(—|jv; — v;||?/c?) (via multipole)
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Shifting

e suppose we have guess I of solution z*
e we can solve Az = b — Az using CG, then get z* =1+ 2
e in this case z*) = & 4 2 = argmin f(z)
$€£—|—]Ck
(Z 4+ K, is called shifted Krylov subspace)

e same as initializing CG alg with x .=z, r := b — Ax

e good for ‘warm start’, i.e., solving Ax = b sEarting from a gooq initial~
guess (e.g., the solution of another system Ax = b, with A~ A, b~ b)

EE364b, Stanford University 30



Preconditioned conjugate gradient algorithm

e idea: apply CG after linear change of coordinates x = Ty, detT" # 0
o use CG to solve TT" ATy = TTb; then set * = T~ 1y*
o T or M =TT" is called preconditioner

e in naive implementation, each iteration requires multiplies by 7" and T*
(and A); also need to compute z* = T~ 1y* at end

e can re-arrange computation so each iteration requires one multiply by
M (and A), and no final solve x* = T~ 1y*

e called preconditioned conjugate gradient (PCG) algorithm
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Choice of preconditioner

o if spectrum of TH AT (which is the same as the spectrum of M A) is
clustered, PCG converges fast

e extreme case: M = A~1

e trade-off between enhanced convergence, and extra cost of
multiplication by M at each step

e goal is to find M that is cheap to multiply, and approximate inverse of
A (or at least has a more clustered spectrum than A)
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Some generic preconditioners

e diagonal: M =diag(1/A11,...,1/A,)

o irAlcomAplete/approximate Cholesky factorization: use M = A=t where
A = LL"' is an approximation of A with cheap Cholesky factorization

— compute Cholesky factorization of A, A = LLT
— at each iteration, compute Mz = L~1L~12 via forward /backward
substitution

e examples

- 1{1 is central k-wide band of A
— L obtained by sparse Cholesky factorization of A, ignoring small
elements in A, or refusing to create excessive fill-in
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Randomized preconditioning
e suppose A = H"H, for some H € R™*™ and m > n

example: Hessian of a convex objective, e.g., least squares problem

argmin, ||Hz — y||3 = argmin, 2" H ' Hx — 2Ty

e QR decomposition H = QR and the preconditioner T'= R~ is ideal
since TTAT = (HT)1'(HT) = Q1 Q = I, whose condition number is 1

however, QR decomposition on H costs O(mn?) operations

e randomized preconditioner: let S € R**™ be a random matrix, e.g.,
i.i.d. +1, and apply QR decomposition as SH = QR. Set T = R~}

computational cost is O(sn?)+cost of forming the sketch SH

e S can be Randomized Hadamard Transform (O(mnlogs))
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Preconditioned conjugate gradient

(with preconditioner M ~ A~! (hopefully))

xr:=0, r:=b—Axg, p:=r z:=Mr, p:=r"z

for k=1,..., Nmax
quit if \/pi < €l|bl|2 or [[r[| < €[|b][2

w = Ap
— _Pk
o= T
=+ ap
ri=Tr—Quw
z:= Mr
T
Pk+1 :— <&~ T
e Pk+1
P-—Z‘l‘—pk p

EE364b, Stanford University
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residual convergence with and without diagonal preconditioning

10*
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The Fletcher-Reeves Method

CG can be adapted for arbitrary differentiable objectives:
set dg = —V f(z(?)) and

VS5
Vf(z*=D)]3

AUYNE apd;  where o = argmin f(zp + ady)

dy = —Vf@wb+dh4u

o (k+1)

e exact line searches are replaced by practical line search procedures
e termination criterion is typically ||V f(z®)|2 < e
e conjugacy of the search directions dj, is only achieved approximately

hence, we may need to reset dj, to —V f(z(*)) periodically
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CG summary

e in theory (with exact arithmetic) converges to solution in n steps

— the bad news: due to numerical round-off errors, can take more than

n steps (or fail to converge)
— the good news: with luck (i.e., good spectrum of A), can get good
approximate solution in < n steps

e cach step requires z — Az multiplication

— can exploit a variety of structure in A
— in many cases, never form or store the matrix A

e compared to direct (factor-solve) methods, CG is less reliable, data
dependent; often requires good (problem-dependent) preconditioner

e but, when it works, can solve extremely large systems
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