Conjugate Gradient Method

direct and indirect methods
positive definite linear systems

Krylov sequence

derivation of the Conjugate Gradient Method

spectral analysis of Krylov sequence

preconditioning

EE364b, Stanford University

Prof. Mert Pilanci

updated: May 5, 2022

Three classes of methods for linear equations

methods to solve linear system Az = b, A € R"*"

e dense direct (factor-solve methods)

— runtime depends only on size; independent of data, structure, or
sparsity
— work well for n up to a few thousand

e sparse direct (factor-solve methods)

— runtime depends on size, sparsity pattern; (almost) independent of

data
— can work well for n up to 10* or 10° (or more)
— requires good heuristic for ordering

EE364b, Stanford University

e indirect (iterative methods)

— runtime depends on data, size, sparsity, required accuracy
— requires tuning, preconditioning, . . .
— good choice in many cases; only choice for n = 10° or larger

EE364b, Stanford University

Symmetric positive definite linear systems

SPD system of equations

Az = b, A e R, A=AT =0

examples

e Newton/interior-point search direction: V?¢(z)Ax = —V¢(x)
e least-squares normal equations: (AT A)x = AT

e regularized least-squares: (AT A+ pul)x = ATb

e minimization of convex quadratic function (1/2)z1 Az — bl x

e solving (discretized) elliptic PDE (e.g., Poisson equation)

EE364b, Stanford University

e analysis of resistor circuit: Gv =1

— v is node voltage (vector), i is (given) source current
— (G is circuit conductance matrix

Q.. — total conductance incident on node 7 i =7
71 —(conductance between nodes i and j) i # j

EE364b, Stanford University

CG overview

e proposed by Hestenes and Stiefel in 1952 (as direct method)
e solves SPD system Ax = b

— in theory (i.e., exact arithmetic) in n iterations
— each iteration requires a few inner products in R", and one
matrix-vector multiply z — Az

e for A dense, matrix-vector multiply z — Az costs n?, so total cost is
n3, same as direct methods

e get advantage over dense if matrix-vector multiply is cheaper than n?
e with roundoff error, CG can work poorly (or not at all)

e but for some A (and b), can get good approximate solution in < n
iterations

EE364b, Stanford University

Solution and error
o 2* = A1b is solution
e * minimizes (convex function) f(z) = (1/2)z! Ax — bz
e Vf(x)=Ax — b is gradient of f
e with f* = f(z*), we have

flx)—f* = (1/2)z" Az —b'ax — (1/2)* Az* + b' 2*
= (1/2)(z — ") Az — 2¥)
= (1/2)]|z — 2*|%
i.e., f(x) — f* is half of squared A-norm of error z — z*

EE364b, Stanford University

e a relative measure (comparing x to 0):

fa) = =2
O

8

T =

(fraction of maximum possible reduction in f, compared to x = 0)

EE364b, Stanford University

Residual

e r =b— Ax is called the residual at z«

o 1= -Vf(x) = A" -)

e in terms of r, we have

fl@)=f = (1/2)(@ —2")" Az —27)

= (1/2)[Ir]%-
e a commonly used measure of relative accuracy: n = ||r||/||b||

o 7 < r(A)n? (n is easily computable from z; T is not)

EE364b, Stanford University

Krylov subspace

(a.k.a. controllability subspace)

K. = span{b, Ab,..., A* b}
= {p(A)b | p polynomial, degp < k}
we define the Krylov sequence =V, () ... as

k) — argmin f(x) = argmin ||z — 55*H124
xe]Ck mEICk;

the CG algorithm (among others) generates the Krylov sequence

EE364b, Stanford University

Properties of Krylov sequence
o f(zF+) < (™) (but ||| can increase)
o (" =2* (i.e., x* € K,, even when K,, # R")
o £(F) = p.(A)b, where py, is a polynomial with degpy < k
e less obvious: there is a two-term recurrence
2D = 2 4 qpr®) 4 By (2R — =)

for some ay, By (basis of CG algorithm)

EE364b, Stanford University

10

Cayley-Hamilton theorem

characteristic polynomial of A:
x(s) =det(s] —A)=s"+ 18" 1+ 4+ ay,
by Caley-Hamilton theorem
X(A) = A"+ A" P ol =0
and so
A = —(1/a) A" — (aq /o)A 2 — o — (p_1/an)]

in particular, we see that 2* = A='b € K,

EE364b, Stanford University

11

Deriving the Conjugate Gradient Method

e suppose {dg,...,dr_1} is an orthogonal basis for K, under the A—inner
product, i.e., (d;)? Ad; =0Vi # j

o let x(k) = Zf:_()l o d;

2
| kol k—1 k—1
= LS (S o) (T aa)
i=0 i=0 =0

k—1
1
— 5 Z Oz?(dz)TAdz — Oé@‘dez‘
1=0

e decomposable problem, optimal o = bl'd;/||d;||% Vi

EE364b, Stanford University 12

Constructing the basis (slow)

e suppose {dy,...,dr_1} is an orthogonal basis for ICj

e extend {dy,...,dr_1} to a basis of K1 using Gram-Schmidt procedure

— d:)1 Ag
]ZZ:O 7 (d;)T Ad,

e where we can pick any g € K41 such that g ¢ Ky, e.g., g = AFb

T
k bTd; o

e after constructing the basis, set z(*) = Z?;& azd; = ijo @7 A%
J J

e Conjugate Gradient method constructs the basis online by picking
g:=—Vf(z®)=b— Azx¥)

EE364b, Stanford University 13

Simplifying Gram-Schmidt procedure
e initialize at z(?) =0

do=—-Vf(z®)=b—- Az =p

(b — Am(l)) _ do(dO)TA(b—Aw(l))

dr = (do)TAdyg

I @y g @TAap-423) o @) Tap—a22))
dy = (b Az) dy (d)T Adq do (dg) T Ady

(b — AR®Y _ g @)TAp=a2B3)) L @pTap-4s) g A@p-—as3)
ds = (b — Az™) — d (do)T Adg U a)Tad do =G Tad

e turns out red terms are zero due to orthogonality

EE364b, Stanford University

14

o since 2(M =% a*d; we have A+t = () 4 o4,

JOJ

o we pick dy = -V f(z®)and fork=1,...,n—1

k—1 k
dTA(=V f(z ™))
_ k
dy = =V f(zM) Ejd] A4,

e it holds that d?V f(z*)) = 0 and V f(aD)IV f(a™) =0 Vj < k

proof: we have d! V f(zM)) = dl'(Axg —b) + afidl Ady = 0 and
0

dI'V f(a D) = dT (Az™ + agdy — b) = dEV f(aW)) — af df Ady,

Oforj #k

in addition span(do, ..., ds) = span(V f(z®, ..., V f(z(?)))

EE364b, Stanford University 15

Simplifying CG update

e finally, note that

V(U t)) = Vf)) = AW + aidy) — b — (A2 — b) = afAd,

e simplify the basis update

d, = —Vfz®)—

= V") -

= —V/@") -

EE364b, Stanford University

&
|
[

TA(— (k)
§ FACTIE)
dT Ad,

x> .
I
= (-}

(Vf(@UTD) = V(W) (=V f(z*))
(Vf(aUtD) — V f(z0)))Td;

d;

Q.
I
o

V(@0 (=V f(a™))

O e L)

16

Final CG update rule

e CG algorithm simplifies to

|V /(= *)]]3
IV £ (@E=D)|I3

dy = —Vfz®)+d_,

T
o pFtl) — (k) 4 ajd, where o™ = argming, f(z) + ady) = d%jsk

since we have f(z*=1)Td,_; = —||Vf(=*~1)||2. Proof:

Vf(a?(’“))T(—Vf(x““))))
(=V f(z*=1))Td)_

Vi) Tdy = V)T (=V ™) —di
= —ViE")VHED)

EE364b, Stanford University 17

Spectral analysis of Krylov sequence

o A=QAQ7", Q orthogonal, A = diag(\,...,\,)
o define y = QTx, b=QTbh, y* = QT z*
e in terms of y, we have

fl@)=fy) = (1/2)2"QAQ z —bv"QQ"x
= (1/2)y"Ay—b'y

= Z ((1/2))%%2 - Bz’yz’)

1=1

so yr =bi/Ni, [*=—(1/2) 37 b2/ N

EE364b, Stanford University

18

Krylov sequence in terms of y

y™) = argmin f(y),
yeky

K. = span{b, Ab, ..., A" 1b}

ngk) = pr(Ai)bi, degpr < k

n

pr = argmin
deg p<k i—1

EE364b, Stanford University

b7 ((1/2)Aip(Ai)° — p(Ns))

19

f(a:(k)) _

EE364b, Stanford University

min
deg g<k, q(0)=1

min
deg g<k, q(0)=1

—1)?

—1)°

(1/2) Zg:%q@ ?

- QQ()\i)Z
(1/2) 3 B

1=1

20

__ Dildeggzi, g(0)=1 S U Ng(N)?
k — —

min (max q()\i)z)

deg q<k, q(0)=1 \:=1,...,n

IA

e if there is a polynomial ¢ of degree k, with ¢(0) = 1, that is small on
the spectrum of A, then f(:c(k)) — f* is small

e if eigenvalues are clustered in k groups, then y*®) is a good approximate
solution

e if solution x™ is approximately a linear combination of k£ eigenvectors of
A, then y(*) is a good approximate solution

EE364b, Stanford University 21

A bound on convergence rate

e taking g as Chebyshev polynomial of degree k, that is small on interval
P\mina)\max]; we get

<<\/E_1

k
W) , K = Amax/ Amin

e convergence can be much faster than this, if spectrum of A is spread
but clustered

EE364b, Stanford University 22

Small example

A € R™7, spectrum shown as filled circles: py, ps, 3, pa, and p7 shown

2 T T T T

EE364b, Stanford University 23

eta

EE364b, Stanford University

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Convergence

24

Residual convergence

EE364b, Stanford University

25

Larger example

e solve Gv = i, resistor network with 10° nodes

e average node degree 10; around 10° nonzeros in G
e random topology with one grounded node

e nonzero branch conductances uniform on |0, 1]

e external current ¢ uniform on [0, 1]

e sparse Cholesky factorization of GG requires too much memory

EE364b, Stanford University

26

relres

EE364b, Stanford University

10

10

10

10

-4

10

10

10

Residual convergence

10

20

30
cgiter

40

50

60

27

CG algorithm

(follows C. T. Kelley)

. L lel12
r:=0, 7r:=0b po:=|r|
for k=1,..., Nmax

quit if \/pr—1 < €[|b]|

if k=1then p:=1; else p:=r+ (pr_1/pr_2)p

w = Ap

a:= pyp_1/p’w
=+ ap
ri=7r—Qaw

pr = |Ir®

EE364b, Stanford University

28

Efficient matrix-vector multiply

e sparse A

e structured (e.g., sparse) plus low rank

e products of easy-to-multiply matrices

e fast transforms (FFT, wavelet, . . .)

e inverses of lower/upper triangular (by forward /backward substitution)

e fast Gauss transform, for A;; = exp(—|jv; — v;||?/c?) (via multipole)

EE364b, Stanford University

29

Shifting

e suppose we have guess I of solution z*
e we can solve Az = b — Az using CG, then get z* =1+ 2
e in this case z*) = & 4 2 = argmin f(z)
$€£—|—]Ck
(Z 4+ K, is called shifted Krylov subspace)

e same as initializing CG alg with x .=z, r := b — Ax

e good for ‘warm start’, i.e., solving Ax = b sEarting from a gooq initial~
guess (e.g., the solution of another system Ax = b, with A~ A, b~ b)

EE364b, Stanford University 30

Preconditioned conjugate gradient algorithm

e idea: apply CG after linear change of coordinates x = Ty, detT" # 0
o use CG to solve TT" ATy = TTb; then set * = T~ 1y*
o T or M =TT" is called preconditioner

e in naive implementation, each iteration requires multiplies by 7" and T*
(and A); also need to compute z* = T~ 1y* at end

e can re-arrange computation so each iteration requires one multiply by
M (and A), and no final solve x* = T~ 1y*

e called preconditioned conjugate gradient (PCG) algorithm

EE364b, Stanford University 31

Choice of preconditioner

o if spectrum of TH AT (which is the same as the spectrum of M A) is
clustered, PCG converges fast

e extreme case: M = A~1

e trade-off between enhanced convergence, and extra cost of
multiplication by M at each step

e goal is to find M that is cheap to multiply, and approximate inverse of
A (or at least has a more clustered spectrum than A)

EE364b, Stanford University 32

Some generic preconditioners

e diagonal: M =diag(1/A11,...,1/A,)

o irAlcomAplete/approximate Cholesky factorization: use M = A=t where
A = LL"' is an approximation of A with cheap Cholesky factorization

— compute Cholesky factorization of A, A = LLT
— at each iteration, compute Mz = L~1L~12 via forward /backward
substitution

e examples

- 1{1 is central k-wide band of A
— L obtained by sparse Cholesky factorization of A, ignoring small
elements in A, or refusing to create excessive fill-in

EE364b, Stanford University

33

Randomized preconditioning
e suppose A = H"H, for some H € R™*™ and m > n

example: Hessian of a convex objective, e.g., least squares problem

argmin, ||Hz — y||3 = argmin, 2" H ' Hx — 2Ty

e QR decomposition H = QR and the preconditioner T'= R~ is ideal
since TTAT = (HT)1'(HT) = Q1 Q = I, whose condition number is 1

however, QR decomposition on H costs O(mn?) operations

e randomized preconditioner: let S € R**™ be a random matrix, e.g.,
i.i.d. +1, and apply QR decomposition as SH = QR. Set T = R~}

computational cost is O(sn?)+cost of forming the sketch SH

e S can be Randomized Hadamard Transform (O(mnlogs))

EE364b, Stanford University 34

Preconditioned conjugate gradient

(with preconditioner M ~ A~! (hopefully))

xr:=0, r:=b—Axg, p:=r z:=Mr, p:=r"z

for k=1,..., Nmax
quit if \/pi < €l|bl|2 or [[r[| < €[|b][2

w = Ap
— _Pk
o= T
=+ ap
ri=Tr—Quw
z:= Mr
T
Pk+1 :— <&~ T
e Pk+1
P-—Z‘l‘—pk p

EE364b, Stanford University

35

residual convergence with and without diagonal preconditioning

10*

EE364b, Stanford University

Larger example

T T T

T

10

20 30 40

60

The Fletcher-Reeves Method

CG can be adapted for arbitrary differentiable objectives:
set dg = —V f(z(?)) and

VS5
Vf(z*=D)]3

AUYNE apd; where o = argmin f(zp + ady)

dy = —Vf@wb+dh4u

o (k+1)

e exact line searches are replaced by practical line search procedures
e termination criterion is typically ||V f(z®)|2 < e
e conjugacy of the search directions dj, is only achieved approximately

hence, we may need to reset dj, to —V f(z(*)) periodically

EE364b, Stanford University

37

CG summary

e in theory (with exact arithmetic) converges to solution in n steps

— the bad news: due to numerical round-off errors, can take more than

n steps (or fail to converge)
— the good news: with luck (i.e., good spectrum of A), can get good
approximate solution in < n steps

e cach step requires z — Az multiplication

— can exploit a variety of structure in A
— in many cases, never form or store the matrix A

e compared to direct (factor-solve) methods, CG is less reliable, data
dependent; often requires good (problem-dependent) preconditioner

e but, when it works, can solve extremely large systems

EE364b, Stanford University

38

