Subgradient Methods for Constrained Problems

- projected subgradient method
- projected subgradient for dual
- subgradient method for constrained optimization

Projected subgradient method

solves constrained optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{C},
\end{array}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, \mathcal{C} \subseteq \mathbf{R}^{n}$ are convex
projected subgradient method is given by

$$
x^{(k+1)}=\Pi\left(x^{(k)}-\alpha_{k} g^{(k)}\right)
$$

Π is (Euclidean) projection on \mathcal{C}, and $g^{(k)} \in \partial f\left(x^{(k)}\right)$
same convergence results:

- for constant step size, converges to neighborhood of optimal (for f differentiable and h small enough, converges)
- for diminishing nonsummable step sizes, converges
key idea: projection does not increase distance to x^{\star}

Linear equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

projection of z onto $\{x \mid A x=b\}$ is

$$
\begin{aligned}
\Pi(z) & =z-A^{T}\left(A A^{T}\right)^{-1}(A z-b) \\
& =\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) z+A^{T}\left(A A^{T}\right)^{-1} b
\end{aligned}
$$

projected subgradient update is (using $A x^{(k)}=b$)

$$
\begin{aligned}
x^{(k+1)} & =\Pi\left(x^{(k)}-\alpha_{k} g^{(k)}\right) \\
& =x^{(k)}-\alpha_{k}\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) g^{(k)} \\
& =x^{(k)}-\alpha_{k} \Pi_{\mathcal{N}(A)}\left(g^{(k)}\right)
\end{aligned}
$$

Example: Least l_{1}-norm

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=b
\end{array}
$$

subgradient of objective is $g=\boldsymbol{\operatorname { s i g n }}(x)$
projected subgradient update is

$$
x^{(k+1)}=x^{(k)}-\alpha_{k}\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) \operatorname{sign}\left(x^{(k)}\right)
$$

problem instance with $n=1000, m=50$, step size $\alpha_{k}=0.1 / k, f^{\star} \approx 3.2$

Projected subgradient for dual problem

(convex) primal:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

solve dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

via projected subgradient method:

$$
\lambda^{(k+1)}=\left(\lambda^{(k)}-\alpha_{k} h\right)_{+}, \quad h \in \partial(-g)\left(\lambda^{(k)}\right)
$$

Subgradient of negative dual function

assume f_{0} is strictly convex, and denote, for $\lambda \succeq 0$,

$$
x^{*}(\lambda)=\underset{z}{\operatorname{argmin}}\left(f_{0}(z)+\lambda_{1} f_{1}(z)+\cdots+\lambda_{m} f_{m}(z)\right)
$$

so $g(\lambda)=f_{0}\left(x^{*}(\lambda)\right)+\lambda_{1} f_{1}\left(x^{*}(\lambda)\right)+\cdots+\lambda_{m} f_{m}\left(x^{*}(\lambda)\right)$
a subgradient of $-g$ at λ is given by $h_{i}=-f_{i}\left(x^{*}(\lambda)\right)$
projected subgradient method for dual:

$$
x^{(k)}=x^{*}\left(\lambda^{(k)}\right), \quad \lambda_{i}^{(k+1)}=\left(\lambda_{i}^{(k)}+\alpha_{k} f_{i}\left(x^{(k)}\right)\right)_{+}
$$

- primal iterates $x^{(k)}$ are not feasible, but become feasible in limit (sometimes can find feasible, suboptimal $\tilde{x}^{(k)}$ from $x^{(k)}$)
- dual function values $g\left(\lambda^{(k)}\right)$ converge to $f^{\star}=f_{0}\left(x^{\star}\right)$
interpretation:
- λ_{i} is price for 'resource' $f_{i}(x)$
- price update $\lambda_{i}^{(k+1)}=\left(\lambda_{i}^{(k)}+\alpha_{k} f_{i}\left(x^{(k)}\right)\right)_{+}$
- increase price λ_{i} if resource i is over-utilized (i.e., $f_{i}(x)>0$)
- decrease price λ_{i} if resource i is under-utilized (i.e., $f_{i}(x)<0$)
- but never let prices get negative

Example

minimize strictly convex quadratic $(P \succ 0)$ over unit box:

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x-q^{T} x \\
\text { subject to } & x_{i}^{2} \leq 1, \quad i=1, \ldots, n
\end{array}
$$

- $L(x, \lambda)=(1 / 2) x^{T}(P+\operatorname{diag}(2 \lambda)) x-q^{T} x-\mathbf{1}^{T} \lambda$
- $x^{*}(\lambda)=(P+\boldsymbol{\operatorname { d i a g }}(2 \lambda))^{-1} q$
- projected subgradient for dual:

$$
x^{(k)}=\left(P+\operatorname{diag}\left(2 \lambda^{(k)}\right)\right)^{-1} q, \quad \lambda_{i}^{(k+1)}=\left(\lambda_{i}^{(k)}+\alpha_{k}\left(\left(x_{i}^{(k)}\right)^{2}-1\right)\right)_{+}
$$

problem instance with $n=50$, fixed step size $\alpha=0.1, f^{\star} \approx-5.3$; $\tilde{x}^{(k)}$ is a nearby feasible point for $x^{(k)}$

Subgradient method for constrained optimization

solves constrained optimization problem

```
minimize }\quad\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq0,\quadi=1,\ldots,m
```

where $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are convex
same update $x^{(k+1)}=x^{(k)}-\alpha_{k} g^{(k)}$, but we have

$$
g^{(k)} \in \begin{cases}\partial f_{0}(x) & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\ \partial f_{j}(x) & f_{j}(x)>0\end{cases}
$$

define $f_{\text {best }}^{(k)}=\min \left\{f_{0}\left(x^{(i)}\right) \mid x^{(i)}\right.$ feasible, $\left.i=1, \ldots, k\right\}$

Convergence

assumptions:

- there exists an optimal x^{\star}; Slater's condition holds
- $\left\|g^{(k)}\right\|_{2} \leq G ;\left\|x^{(1)}-x^{\star}\right\|_{2} \leq R$
typical result: for $\alpha_{k}>0, \alpha_{k} \rightarrow 0, \sum_{i=1}^{\infty} \alpha_{i}=\infty$, we have $f_{\text {best }}^{(k)} \rightarrow f^{\star}$

Example: Inequality form LP

LP with $n=20$ variables, $m=200$ inequalities, $f^{\star} \approx-3.4$;
$\alpha_{k}=1 / k$ for optimality step, Polyak's step size for feasibility step

