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Ellipsoid method

• developed by Shor, Nemirovsky, Yudin in 1970s

• used in 1979 by Khachian to show polynomial solvability of LPs

• each step requires cutting-plane or subgradient evaluation

• modest storage (O(n2))

• modest computation per step (O(n2)), via analytical formula

• efficient in theory; slow but steady in practice
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Motivation

in cutting-plane methods

• serious computation is needed to find next query point
(typically O(n2m), with not small constant)

• localization polyhedron grows in complexity as algorithm progresses
(we can, however, prune constraints to keep m proportional to n, e.g.,
m = 4n)

ellipsoid method addresses both issues, but retains theoretical efficiency
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Ellipsoid algorithm for minimizing convex function

idea: localize x⋆ in an ellipsoid instead of a polyhedron

1. at iteration k we know x⋆ ∈ E(k)

2. set x(k) := center(E(k)); evaluate g(k) ∈ ∂f(x(k))
(g(k) = ∇f(x(k)) if f is differentiable)

3. hence we know

x⋆ ∈ E(k) ∩ {z | g(k)T (z − x(k)) ≤ 0}

(a half-ellipsoid)

4. set E(k+1) := minimum volume ellipsoid covering
E(k) ∩ {z | g(k)T (z − x(k)) ≤ 0}
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compared to cutting-plane methods:

• localization set doesn’t grow more complicated

• easy to compute query point

• but, we add unnecessary points in step 4
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Properties of ellipsoid method

• reduces to bisection for n = 1

• simple formula for E(k+1) given E(k), g(k)

• E(k+1) can be larger than E(k) in diameter (max semi-axis length), but
is always smaller in volume

• vol(E(k+1)) < e−
1
2n vol(E(k))

(volume reduction factor degrades rapidly with n, compared to CG or
MVE cutting-plane methods)

• logvol E(k+1) ≤ logvol E(k) − 1/(2n)
(uncertainty in location of x⋆ decreases by a fixed number of bits each
iteration)
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Updating the ellipsoid

E(x, P ) =
{

z | (z − x)TP−1(z − x) ≤ 1
}
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(for n > 1) minimum volume ellipsoid containing half-ellipsoid

E ∩
{

z | gT (z − x) ≤ 0
}

is given by

x+ = x− 1

n+ 1
P g̃

P+ =
n2

n2 − 1

(

P − 2

n+ 1
P g̃g̃TP

)

where g̃ = (1/
√

gTPg)g

P g̃ is step from x to boundary of E
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Ellipsoid update — “Hessian” form

propagate H = P−1 instead of P

x+ = x− 1

n+ 1
H−1g̃

H+ =

(

1− 1

n2

)(

H +
2

n− 1
g̃g̃T

)

where g̃ = (1/
√

gTH−1g)g

H−1g̃ is step from x to boundary of E
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Simple stopping criterion

f(x⋆) ≥ f(x(k)) + g(k)T (x⋆ − x(k))

≥ f(x(k)) + inf
z∈E(k)

g(k)T (z − x(k))

= f(x(k))−
√

g(k)TP (k)g(k)

second inequality holds since x⋆ ∈ Ek
simple stopping criterion:

√

g(k)TP (k)g(k) ≤ ǫ =⇒ f(x(k))− f(x⋆) ≤ ǫ
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Basic ellipsoid algorithm

ellipsoid described as E(x, P ) = {z | (z − x)TP−1(z − x) ≤ 1}

given ellipsoid E(x, P ) containing x⋆, accuracy ǫ > 0

repeat
1. evaluate g ∈ ∂f(x)

2. if
√

gTPg ≤ ǫ, return(x)
3. update ellipsoid

3a. g̃ := 1√
gTPg

g

3b. x := x− 1
n+1P g̃

3c. P := n2

n2−1

(

P − 2
n+1P g̃g̃TP

)
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Interpretation

• change coordinates so uncertainty is isotropic (same in all directions),
i.e., E is unit ball

• take subgradient step with fixed length 1/(n+ 1)

• Shor calls ellipsoid method ‘gradient method with space dilation in
direction of gradient’ (which, strangely enough, didn’t catch on)
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Example

PWL function f(x) = maxmi=1(a
T
i x+ bi), with n = 20, m = 100
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Improvements

• keep track of best upper and lower bounds:

uk = min
i=1,...,k

f(x(i)), lk = max
i=1,...,k

(

f(x(i))−
√

g(i)TP (i)g(i)
)

stop when uk − lk ≤ ǫ

• can propagate Cholesky factor of P
(avoids problem of P 6≻ 0 due to numerical roundoff)
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Proof of convergence

assumptions:

• f is Lipschitz: |f(y)− f(x)| ≤ G‖y − x‖
• E(0) is ball with radius R

suppose f(x(i)) > f⋆ + ǫ, i = 0, . . . , k

then
f(x) ≤ f⋆ + ǫ =⇒ x ∈ E(k)

since at iteration i we only discard points with f ≥ f(x(i))
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from Lipschitz condition,

‖x− x⋆‖ ≤ ǫ/G =⇒ f(x) ≤ f⋆ + ǫ =⇒ x ∈ E(k)

so B = {x | ‖x− x⋆‖ ≤ ǫ/G} ⊆ E(k)

hence vol(B) ≤ vol(E(k)), so

αn(ǫ/G)n ≤ e−k/2n
vol(E(0)) = e−k/2nαnR

n

(αn is volume of unit ball in Rn)

therefore k ≤ 2n2 log(RG/ǫ)
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E(0)

E(k)

x(k)

f(x) ≤ f⋆ + ǫ

B = {x | ‖x − x⋆‖ ≤ ǫ/G}

x⋆

conclusion: for k > 2n2 log(RG/ǫ),

min
i=0,...,k

f(x(i)) ≤ f⋆ + ǫ
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Interpretation of complexity

since x⋆ ∈ E0 = {x | ‖x− x(0)‖ ≤ R}, our prior knowledge of f⋆ is

f⋆ ∈ [f(x(0))−GR, f(x(0))]

our prior uncertainty in f⋆ is GR

after k iterations our knowledge of f⋆ is

f⋆ ∈
[

min
i=0,...,k

f(x(i))− ǫ, min
i=0,...,k

f(x(i))

]

posterior uncertainty in f⋆ is ≤ ǫ
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iterations required:

2n2 log
RG

ǫ
= 2n2 log

prior uncertainty

posterior uncertainty

efficiency: 0.72/n2 bits per subgradient evaluation
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Deep cut ellipsoid method

minimum volume ellipsoid containing ellipsoid intersected with halfspace

E ∩
{

z | gT (z − x) + h ≤ 0
}

with h ≥ 0, is given by

x+ = x− 1 + αn

n+ 1
P g̃

P+ =
n2(1− α2)

n2 − 1

(

P − 2(1 + αn)

(n+ 1)(1 + α)
P g̃g̃TP

)

where

g̃ =
g

√

gTPg
, α =

h
√

gTPg

(if α > 1, intersection is empty)
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Ellipsoid method with deep objective cuts
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Inequality constrained problems

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

• if x(k) feasible, update ellipsoid with objective cut

gT0 (z − x(k)) + f0(x
(k))− f

(k)
best ≤ 0, g0 ∈ ∂f0(x

(k))

f
(k)
best is best objective value of feasible iterates so far

• if x(k) infeasible, update ellipsoid with feasibility cut

gTj (z − x(k)) + fj(x
(k)) ≤ 0, gj ∈ ∂fj(x

(k))

assuming fj(x
(k)) > 0
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Stopping criterion

if x(k) is feasible, we have lower bound on p⋆ as before:

p⋆ ≥ f0(x
(k))−

√

g
(k)T
0 P (k)g

(k)
0

if x(k) is infeasible, we have for all x ∈ E(k)

fj(x) ≥ fj(x
(k)) + g

(k)T
j (x− x(k))

≥ fj(x
(k)) + inf

z∈E(k)
g(k)T (z − x(k))

= fj(x
(k))−

√

g
(k)T
j P (k)g

(k)
j
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hence, problem is infeasible if for some j,

fj(x
(k))−

√

g
(k)T
j P (k)g

(k)
j > 0

stopping criteria:

• if x(k) is feasible and

√

g
(k)T
0 P (k)g

(k)
0 ≤ ǫ (x(k) is ǫ-suboptimal)

• if fj(x
(k))−

√

g
(k)T
j P (k)g

(k)
j > 0 (problem is infeasible)
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