Ellipsoid Method

- ellipsoid method
- convergence proof
- inequality constraints
- feasibility problems

Ellipsoid method

- developed by Shor, Nemirovsky, Yudin in 1970s
- used in 1979 by Khachian to show polynomial solvability of LPs
- each step requires cutting-plane or subgradient evaluation
- modest storage $\left(O\left(n^{2}\right)\right)$
- modest computation per step $\left(O\left(n^{2}\right)\right)$, via analytical formula
- efficient in theory; slow but steady in practice

Motivation

in cutting-plane methods

- serious computation is needed to find next query point (typically $O\left(n^{2} m\right)$, with not small constant)
- localization polyhedron grows in complexity as algorithm progresses (we can, however, prune constraints to keep m proportional to n, e.g., $m=4 n$)
ellipsoid method addresses both issues, but retains theoretical efficiency

Ellipsoid algorithm for minimizing convex function

idea: localize x^{\star} in an ellipsoid instead of a polyhedron

1. at iteration k we know $x^{\star} \in \mathcal{E}^{(k)}$
2. set $x^{(k)}:=\operatorname{center}\left(\mathcal{E}^{(k)}\right) ;$ evaluate $g^{(k)} \in \partial f\left(x^{(k)}\right)$ ($g^{(k)}=\nabla f\left(x^{(k)}\right)$ if f is differentiable)
3. hence we know

$$
x^{\star} \in \mathcal{E}^{(k)} \cap\left\{z \mid g^{(k) T}\left(z-x^{(k)}\right) \leq 0\right\}
$$

(a half-ellipsoid)
4. set $\mathcal{E}^{(k+1)}:=$ minimum volume ellipsoid covering $\mathcal{E}^{(k)} \cap\left\{z \mid g^{(k) T}\left(z-x^{(k)}\right) \leq 0\right\}$

compared to cutting-plane methods:

- localization set doesn't grow more complicated
- easy to compute query point
- but, we add unnecessary points in step 4

Properties of ellipsoid method

- reduces to bisection for $n=1$
- simple formula for $\mathcal{E}^{(k+1)}$ given $\mathcal{E}^{(k)}, g^{(k)}$
- $\mathcal{E}^{(k+1)}$ can be larger than $\mathcal{E}^{(k)}$ in diameter (max semi-axis length), but is always smaller in volume
- $\operatorname{vol}\left(\mathcal{E}^{(k+1)}\right)<e^{-\frac{1}{2 n}} \operatorname{vol}\left(\mathcal{E}^{(k)}\right)$ (volume reduction factor degrades rapidly with n, compared to CG or MVE cutting-plane methods)
- $\log \operatorname{vol} \mathcal{E}^{(k+1)} \leq \log \operatorname{vol} \mathcal{E}^{(k)}-1 /(2 n)$ (uncertainty in location of x^{\star} decreases by a fixed number of bits each iteration)

Example

Updating the ellipsoid

(for $n>1$) minimum volume ellipsoid containing half-ellipsoid

$$
\mathcal{E} \cap\left\{z \mid g^{T}(z-x) \leq 0\right\}
$$

is given by

$$
\begin{aligned}
x^{+} & =x-\frac{1}{n+1} P \tilde{g} \\
P^{+} & =\frac{n^{2}}{n^{2}-1}\left(P-\frac{2}{n+1} P \tilde{g} \tilde{g}^{T} P\right)
\end{aligned}
$$

where $\tilde{g}=\left(1 / \sqrt{g^{T} P g}\right) g$
$P \tilde{g}$ is step from x to boundary of \mathcal{E}

Ellipsoid update - "Hessian" form

propagate $H=P^{-1}$ instead of P

$$
\begin{aligned}
x^{+} & =x-\frac{1}{n+1} H^{-1} \tilde{g} \\
H^{+} & =\left(1-\frac{1}{n^{2}}\right)\left(H+\frac{2}{n-1} \tilde{g} \tilde{g}^{T}\right)
\end{aligned}
$$

where $\tilde{g}=\left(1 / \sqrt{g^{T} H^{-1} g}\right) g$
$H^{-1} \tilde{g}$ is step from x to boundary of \mathcal{E}

Simple stopping criterion

$$
\begin{aligned}
f\left(x^{\star}\right) & \geq f\left(x^{(k)}\right)+g^{(k) T}\left(x^{\star}-x^{(k)}\right) \\
& \geq f\left(x^{(k)}\right)+\inf _{z \in \mathcal{E}^{(k)}} g^{(k) T}\left(z-x^{(k)}\right) \\
& =f\left(x^{(k)}\right)-\sqrt{g^{(k) T} P^{(k)} g^{(k)}}
\end{aligned}
$$

second inequality holds since $x^{\star} \in \mathcal{E}_{k}$ simple stopping criterion:

$$
\sqrt{g^{(k) T} P^{(k)} g^{(k)}} \leq \epsilon \quad \Longrightarrow \quad f\left(x^{(k)}\right)-f\left(x^{\star}\right) \leq \epsilon
$$

Basic ellipsoid algorithm

ellipsoid described as $\mathcal{E}(x, P)=\left\{z \mid(z-x)^{T} P^{-1}(z-x) \leq 1\right\}$

$$
\begin{aligned}
& \text { given ellipsoid } \mathcal{E}(x, P) \text { containing } x^{\star} \text {, accuracy } \epsilon>0 \\
& \text { repeat } \\
& \text { 1. evaluate } g \in \partial f(x) \\
& \text { 2. if } \sqrt{g^{T} P g} \leq \epsilon \text {, return }(x) \\
& \text { 3. update ellipsoid } \\
& \text { 3a. } \tilde{g}:=\frac{1}{\sqrt{g^{T} P g}} g \\
& \text { 3b. } x:=x-\frac{1}{n+1} P \tilde{g} \\
& \text { 3c. } P:=\frac{n^{2}}{n^{2}-1}\left(P-\frac{2}{n+1} P \tilde{g} \tilde{g}^{T} P\right)
\end{aligned}
$$

Interpretation

- change coordinates so uncertainty is isotropic (same in all directions), i.e., \mathcal{E} is unit ball
- take subgradient step with fixed length $1 /(n+1)$
- Shor calls ellipsoid method 'gradient method with space dilation in direction of gradient' (which, strangely enough, didn't catch on)

Example

PWL function $f(x)=\max _{i=1}^{m}\left(a_{i}^{T} x+b_{i}\right)$, with $n=20, m=100$

Improvements

- keep track of best upper and lower bounds:

$$
u_{k}=\min _{i=1, \ldots, k} f\left(x^{(i)}\right), \quad l_{k}=\max _{i=1, \ldots, k}\left(f\left(x^{(i)}\right)-\sqrt{g^{(i) T} P^{(i)} g^{(i)}}\right)
$$

stop when $u_{k}-l_{k} \leq \epsilon$

- can propagate Cholesky factor of P
(avoids problem of $P \nsucc 0$ due to numerical roundoff)

Proof of convergence

assumptions:

- f is Lipschitz: $|f(y)-f(x)| \leq G\|y-x\|$
- $\mathcal{E}^{(0)}$ is ball with radius R
suppose $f\left(x^{(i)}\right)>f^{\star}+\epsilon, i=0, \ldots, k$
then

$$
f(x) \leq f^{\star}+\epsilon \Longrightarrow x \in \mathcal{E}^{(k)}
$$

since at iteration i we only discard points with $f \geq f\left(x^{(i)}\right)$
from Lipschitz condition,

$$
\left\|x-x^{\star}\right\| \leq \epsilon / G \Longrightarrow f(x) \leq f^{\star}+\epsilon \Longrightarrow x \in \mathcal{E}^{(k)}
$$

so $B=\left\{x \mid\left\|x-x^{\star}\right\| \leq \epsilon / G\right\} \subseteq \mathcal{E}^{(k)}$
hence $\operatorname{vol}(B) \leq \operatorname{vol}\left(\mathcal{E}^{(k)}\right)$, so

$$
\alpha_{n}(\epsilon / G)^{n} \leq e^{-k / 2 n} \operatorname{vol}\left(\mathcal{E}^{(0)}\right)=e^{-k / 2 n} \alpha_{n} R^{n}
$$

(α_{n} is volume of unit ball in \mathbf{R}^{n})
therefore $k \leq 2 n^{2} \log (R G / \epsilon)$

conclusion: for $k>2 n^{2} \log (R G / \epsilon)$,

$$
\min _{i=0, \ldots, k} f\left(x^{(i)}\right) \leq f^{\star}+\epsilon
$$

Interpretation of complexity

since $x^{\star} \in \mathcal{E}_{0}=\left\{x \mid\left\|x-x^{(0)}\right\| \leq R\right\}$, our prior knowledge of f^{\star} is

$$
f^{\star} \in\left[f\left(x^{(0)}\right)-G R, f\left(x^{(0)}\right)\right]
$$

our prior uncertainty in f^{\star} is $G R$
after k iterations our knowledge of f^{\star} is

$$
f^{\star} \in\left[\min _{i=0, \ldots, k} f\left(x^{(i)}\right)-\epsilon, \min _{i=0, \ldots, k} f\left(x^{(i)}\right)\right]
$$

posterior uncertainty in f^{\star} is $\leq \epsilon$
iterations required:

$$
2 n^{2} \log \frac{R G}{\epsilon}=2 n^{2} \log \frac{\text { prior uncertainty }}{\text { posterior uncertainty }}
$$

efficiency: $0.72 / n^{2}$ bits per subgradient evaluation

Deep cut ellipsoid method

minimum volume ellipsoid containing ellipsoid intersected with halfspace

$$
\mathcal{E} \cap\left\{z \mid g^{T}(z-x)+h \leq 0\right\}
$$

with $h \geq 0$, is given by

$$
\begin{aligned}
x^{+} & =x-\frac{1+\alpha n}{n+1} P \tilde{g} \\
P^{+} & =\frac{n^{2}\left(1-\alpha^{2}\right)}{n^{2}-1}\left(P-\frac{2(1+\alpha n)}{(n+1)(1+\alpha)} P \tilde{g} \tilde{g}^{T} P\right)
\end{aligned}
$$

where

$$
\tilde{g}=\frac{g}{\sqrt{g^{T} P g}}, \quad \alpha=\frac{h}{\sqrt{g^{T} P g}}
$$

(if $\alpha>1$, intersection is empty)

Ellipsoid method with deep objective cuts

Inequality constrained problems

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- if $x^{(k)}$ feasible, update ellipsoid with objective cut

$$
g_{0}^{T}\left(z-x^{(k)}\right)+f_{0}\left(x^{(k)}\right)-f_{\text {best }}^{(k)} \leq 0, \quad g_{0} \in \partial f_{0}\left(x^{(k)}\right)
$$

$f_{\text {best }}^{(k)}$ is best objective value of feasible iterates so far

- if $x^{(k)}$ infeasible, update ellipsoid with feasibility cut

$$
g_{j}^{T}\left(z-x^{(k)}\right)+f_{j}\left(x^{(k)}\right) \leq 0, \quad g_{j} \in \partial f_{j}\left(x^{(k)}\right)
$$

assuming $f_{j}\left(x^{(k)}\right)>0$

Stopping criterion

if $x^{(k)}$ is feasible, we have lower bound on p^{\star} as before:

$$
p^{\star} \geq f_{0}\left(x^{(k)}\right)-\sqrt{g_{0}^{(k) T} P^{(k)} g_{0}^{(k)}}
$$

if $x^{(k)}$ is infeasible, we have for all $x \in \mathcal{E}^{(k)}$

$$
\begin{aligned}
f_{j}(x) & \geq f_{j}\left(x^{(k)}\right)+g_{j}^{(k) T}\left(x-x^{(k)}\right) \\
& \geq f_{j}\left(x^{(k)}\right)+\inf _{z \in \mathcal{E}^{(k)}} g^{(k) T}\left(z-x^{(k)}\right) \\
& =f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k)}} g_{j}^{(k)}
\end{aligned}
$$

hence, problem is infeasible if for some j,

$$
f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k)} g_{j}^{(k)}}>0
$$

stopping criteria:

- if $x^{(k)}$ is feasible and $\sqrt{g_{0}^{(k) T} P^{(k)} g_{0}^{(k)}} \leq \epsilon \quad\left(x^{(k)}\right.$ is ϵ-suboptimal)
- if $f_{j}\left(x^{(k)}\right)-\sqrt{g_{j}^{(k) T} P^{(k)} g_{j}^{(k)}}>0$
(problem is infeasible)

