Localization and Cutting-Plane Methods

- cutting-plane oracle
- finding cutting-planes
- localization algorithms
- specific cutting-plane methods
- epigraph cutting-plane method
- lower bounds and stopping criteria

Localization and cutting-plane methods

- based on idea of 'localizing' desired point in some set, which becomes smaller at each step
- like subgradient methods, require computation of a subgradient of objective or constraint functions at each step
- in particular, directly handle nondifferentiable convex (and quasiconvex) problems
- typically require more memory and computation per step than subgradient methods
- but can be much more efficient (in theory and practice) than subgradient methods

Cutting-plane oracle

- goal: find a point in convex set $X \subseteq \mathbf{R}^{n}$, or determine that $X=\emptyset$
- our only access to or description of X is through a cutting-plane oracle
- when cutting-plane oracle is queried at $x \in \mathbf{R}^{n}$, it either
- asserts that $x \in X$, or
- returns a separating hyperplane between x and $X: a \neq 0$,

$$
a^{T} z \leq b \text { for } z \in X, \quad a^{T} x \geq b
$$

- (a, b) called a cutting-plane, or cut, since it eliminates the halfspace $\left\{z \mid a^{T} z>b\right\}$ from our search for a point in X

Neutral and deep cuts

- if $a^{T} x=b$ (x is on boundary of halfspace that is cut) cutting-plane is called neutral cut
- if $a^{T} x>b$ (x lies in interior of halfspace that is cut), cutting-plane is called deep cut

Unconstrained minimization

- minimize convex $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- X is set of optimal points (minimizers)
- given x, find $g \in \partial f(x)$
- from $f(z) \geq f(x)+g^{T}(z-x)$ we conclude

$$
g^{T}(z-x)>0 \quad \Longrightarrow \quad f(z)>f(x)
$$

i.e., all points in halfspace $g^{T}(z-x) \geq 0$ are worse than x, and in particular not optimal

- so $g^{T}(z-x) \leq 0$ is (neutral) cutting-plane at $x\left(a=g, b=g^{T} x\right)$

- by evaluating $g \in \partial f(x)$ we rule out a halfspace in our search for x^{\star}
- idea: get one bit of info (on location of x^{\star}) by evaluating g

Deep cut for unconstrained minimization

- suppose we know a number \bar{f} with $f(x)>\bar{f} \geq f^{\star}$ (e.g., the smallest value of f found so far in an algorithm)
- from $f(z) \geq f(x)+g^{T}(z-x)$, we have

$$
f(x)+g^{T}(z-x)>\bar{f} \quad \Longrightarrow \quad f(z)>\bar{f} \geq f^{\star} \quad \Longrightarrow \quad z \notin X
$$

so we have deep cut

$$
g^{T}(z-x)+f(x)-\bar{f} \leq 0
$$

Feasibility problem

find	x
subject to	$f_{i}(x) \leq 0, \quad i=1, \ldots, m$

f_{1}, \ldots, f_{m} convex; X is set of feasible points

- if x not feasible, find j with $f_{j}(x)>0$, and evaluate $g_{j} \in \partial f_{j}(x)$
- since $f_{j}(z) \geq f_{j}(x)+g_{j}^{T}(z-x)$,

$$
f_{j}(x)+g_{j}^{T}(z-x)>0 \quad \Longrightarrow \quad f_{j}(z)>0 \quad \Longrightarrow \quad z \notin X
$$

i.e., any feasible z satisfies the inequality $f_{j}(x)+g_{j}^{T}(z-x) \leq 0$

- this gives a deep cut

Inequality constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$f_{0}, \ldots, f_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex; X is set of optimal points; p^{\star} is optimal value

- if x is not feasible, say $f_{j}(x)>0$, we have (deep) feasibility cut

$$
f_{j}(x)+g_{j}^{T}(z-x) \leq 0, \quad g_{j} \in \partial f_{j}(x)
$$

- if x is feasible, we have (neutral) objective cut

$$
g_{0}^{T}(z-x) \leq 0, \quad g_{0} \in \partial f_{0}(x)
$$

(or, deep cut $g_{0}^{T}(z-x)+f_{0}(x)-\bar{f} \leq 0$ if $\bar{f} \in\left[p^{\star}, f_{0}(x)\right)$ is known)

Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm: given initial polyhedron $\mathcal{P}_{0}=\{z \mid C z \preceq d\}$ known to contain X $k:=0$

repeat

Choose a point $x^{(k+1)}$ in \mathcal{P}_{k}
Query the cutting-plane oracle at $x^{(k+1)}$
If $x^{(k+1)} \in X$, quit
Else, add new cutting-plane $a_{k+1}^{T} z \leq b_{k+1}$:
$\mathcal{P}_{k+1}:=\mathcal{P}_{k} \cap\left\{z \mid a_{k+1}^{T} z \leq b_{k+1}\right\}$
If $\mathcal{P}_{k+1}=\emptyset$, quit
$k:=k+1$

- \mathcal{P}_{k} gives our uncertainty of x^{\star} at iteration k
- want to pick $x^{(k+1)}$ so that \mathcal{P}_{k+1} is as small as possible, no matter what cut is made
- want $x^{(k+1)}$ near center of $\mathcal{P}^{(k)}$

Example: Bisection on \mathbf{R}

- minimize convex $f: \mathbf{R} \rightarrow \mathbf{R}$
- \mathcal{P}_{k} is interval
- obvious choice for query point: $x^{(k+1)}:=\operatorname{midpoint}\left(\mathcal{P}_{k}\right)$

$$
\begin{aligned}
& \qquad \text { bisection algorithm } \\
& \text { given interval } \mathcal{P}_{0}=[l, u] \text { containing } x^{\star} \\
& \text { repeat } \\
& \text { 1. } x:=(l+u) / 2 \\
& \text { 2. evaluate } f^{\prime}(x) \\
& \text { 3. if } f^{\prime}(x)<0, l:=x \text {; else } u:=x
\end{aligned}
$$

length $\left(\mathcal{P}_{k+1}\right)=u_{k+1}-l_{k+1}=\frac{u_{k}-l_{k}}{2}=(1 / 2)$ length $\left(\mathcal{P}_{k}\right)$
and so length $\left(\mathcal{P}_{k}\right)=2^{-k}$ length $\left(\mathcal{P}_{0}\right)$

interpretation:

- length $\left(\mathcal{P}_{k}\right)$ measures our uncertainty in x^{\star}
- uncertainty is halved at each iteration; get exactly one bit of info about x^{\star} per iteration
- \# steps required for uncertainty (in $\left.x^{\star}\right) \leq r$:

$$
\log _{2} \frac{\text { length }\left(\mathcal{P}_{0}\right)}{r}=\log _{2} \frac{\text { initial uncertainty }}{\text { final uncertainty }}
$$

Specific cutting-plane methods

methods vary in choice of query point

- center of gravity (CG) algorithm:
$x^{(k+1)}$ is center of gravity of \mathcal{P}_{k}
- maximum volume ellipsoid (MVE) cutting-plane method: $x^{(k+1)}$ is center of maximum volume ellipsoid contained in \mathcal{P}_{k}
- Chebyshev center cutting-plane method: $x^{(k+1)}$ is Chebyshev center of \mathcal{P}_{k}
- analytic center cutting-plane method (ACCPM): $x^{(k+1)}$ is analytic center of (inequalities defining) \mathcal{P}_{k}

Center of gravity algorithm

take $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ (center of gravity)

$$
\mathrm{CG}\left(\mathcal{P}_{k}\right)=\int_{\mathcal{P}_{k}} x d x / \int_{\mathcal{P}_{k}} d x
$$

theorem. if $C \subseteq \mathbf{R}^{n}$ convex, $x_{\mathrm{cg}}=\mathrm{CG}(C), g \neq 0$,

$$
\operatorname{vol}\left(C \cap\left\{x \mid g^{T}\left(x-x_{\mathrm{cg}}\right) \leq 0\right\}\right) \leq(1-1 / e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)
$$

(independent of dimension n)
hence in $C G$ algorithm, $\operatorname{vol}\left(\mathcal{P}_{k}\right) \leq 0.63^{k} \operatorname{vol}\left(\mathcal{P}_{0}\right)$

Convergence of CG cutting-plane method

- suppose \mathcal{P}_{0} lies in ball of radius R, X includes ball of radius r (can take X as set of ϵ-suboptimal points)
- suppose $x^{(1)}, \ldots, x^{(k)} \notin X$, so $\mathcal{P}_{k} \supseteq X$
- we have

$$
\alpha_{n} r^{n} \leq \operatorname{vol}\left(\mathcal{P}_{k}\right) \leq(0.63)^{k} \operatorname{vol}\left(\mathcal{P}_{0}\right) \leq(0.63)^{k} \alpha_{n} R^{n}
$$

where α_{n} is volume of unit ball in \mathbf{R}^{n}

- so $k \leq 1.51 n \log _{2}(R / r)$ (cf. bisection on \mathbf{R})

advantages of CG-method

- guaranteed convergence
- affine-invariance
- number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

- finding $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ is much harder than original problem
(but, can modify CG-method to work with approximate CG computation)

Maximum volume ellipsoid method

- $x^{(k+1)}$ is center of maximum volume ellipsoid in \mathcal{P}_{k} (can compute as convex problem)
- affine-invariant
- can $\operatorname{show} \operatorname{vol}\left(\mathcal{P}_{k+1}\right) \leq(1-1 / n) \operatorname{vol}\left(\mathcal{P}_{k}\right)$
- hence can bound number of steps:

$$
k \leq \frac{n \log (R / r)}{-\log (1-1 / n)} \approx n^{2} \log (R / r)
$$

- if cutting-plane oracle cost is not small, MVE is a good practical method

Chebyshev center method

- $x^{(k+1)}$ is center of largest Euclidean ball in \mathcal{P}_{k} (can compute via LP)
- not affine invariant; sensitive to scaling

Analytic center cutting-plane method

- $x^{(k+1)}$ is analytic center of $\mathcal{P}_{k}=\left\{z \mid a_{i}^{T} z \leq b_{i}, i=1, \ldots, q\right\}$

$$
x^{(k+1)}=\underset{x}{\operatorname{argmin}}-\sum_{i=1}^{q} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- $x^{(k+1)}$ can be computed using infeasible start Newton method
- works quite well in practice (more on this next lecture)

Extensions

Multiple cuts

- oracle returns set of linear inequalities instead of just one, e.g.,
- all violated inequalities
- all inequalities (including shallow cuts)
- multiple deep cuts
- at each iteration, append (set of) new inequalities to those defining \mathcal{P}_{k}

Nonlinear cuts

- use nonlinear convex inequalities instead of linear ones
- localization set no longer a polyhedron
- some methods (e.g., ACCPM) still work

Dropping constraints

- the problem:
- number of linear inequalities defining \mathcal{P}_{k} increases at each iteration
- hence, computational effort to compute $x^{(k+1)}$ increases
- the solution: drop or prune constraints
- drop redundant constraints
- keep only a fixed number N of (the most relevant) constraints (can cause localization polyhedron to increase!)

Epigraph cutting-plane method

apply cutting-plane method to epigraph form problem

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & f_{0}(x) \leq t \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

with variables $x \in \mathbf{R}^{n}$ and t
at each (x, t), need cutting-plane oracle that separates (x, t) from $\left(x^{\star}, p^{\star}\right)$

- if $x^{(k)}$ is infeasible for original problem and violates j th constraint, add the cutting-plane

$$
f_{j}\left(x^{(k)}\right)+g_{j}^{T}\left(x-x^{(k)}\right) \leq 0, \quad g_{j} \in \partial f_{j}\left(x^{(k)}\right)
$$

- if $x^{(k)}$ is feasible for original problem, add two cutting-planes

$$
f_{0}\left(x^{(k)}\right)+g_{0}^{T}\left(x-x^{(k)}\right) \leq t, \quad t \leq f_{0}\left(x^{(k)}\right)
$$

where $g_{0} \in \partial f_{0}\left(x^{(k)}\right)$

PWL lower bound on convex function

- suppose we have evaluated f and a subgradient of f at $x^{(1)}, \ldots, x^{(q)}$
- for all z,

$$
f(z) \geq f\left(x^{(i)}\right)+g^{(i) T}\left(z-x^{(i)}\right), \quad i=1, \ldots, q
$$

and so

$$
f(z) \geq \hat{f}(z)=\max _{i=1, \ldots, q}\left(f\left(x^{(i)}\right)+g^{(i) T}\left(z-x^{(i)}\right)\right) .
$$

- \hat{f} is a convex piecewise-linear global underestimator of f

Lower bound

- in solving convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& C x \preceq d
\end{array}
$$

we have evaluated some of the f_{i} and subgradients at $x^{(1)}, \ldots, x^{(k)}$

- form piecewise-linear approximations $\hat{f}_{0}, \ldots, \hat{f}_{m}$
- form PWL relaxed problem

$$
\begin{array}{ll}
\operatorname{minimize} & \hat{f}_{0}(x) \\
\text { subject to } & \hat{f}_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& C x \preceq d
\end{array}
$$

(can be solved via LP)

- optimal value is a lower bound on p^{\star}

