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Localization and cutting-plane methods

• based on idea of ‘localizing’ desired point in some set, which becomes
smaller at each step

• like subgradient methods, require computation of a subgradient of
objective or constraint functions at each step

• in particular, directly handle nondifferentiable convex (and quasiconvex)
problems

• typically require more memory and computation per step than
subgradient methods

• but can be much more efficient (in theory and practice) than
subgradient methods
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Cutting-plane oracle

• goal: find a point in convex set X ⊆ Rn, or determine that X = ∅

• our only access to or description of X is through a cutting-plane oracle

• when cutting-plane oracle is queried at x ∈ Rn, it either

– asserts that x ∈ X, or
– returns a separating hyperplane between x and X: a 6= 0,

aTz ≤ b for z ∈ X, aTx ≥ b

• (a, b) called a cutting-plane, or cut, since it eliminates the halfspace
{z | aTz > b} from our search for a point in X
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Neutral and deep cuts

• if aTx = b (x is on boundary of halfspace that is cut) cutting-plane is
called neutral cut

• if aTx > b (x lies in interior of halfspace that is cut), cutting-plane is
called deep cut

xx

XX
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Unconstrained minimization

• minimize convex f : Rn → R

• X is set of optimal points (minimizers)

• given x, find g ∈ ∂f(x)

• from f(z) ≥ f(x) + gT (z − x) we conclude

gT (z − x) > 0 =⇒ f(z) > f(x)

i.e., all points in halfspace gT (z − x) ≥ 0 are worse than x, and in
particular not optimal

• so gT (z − x) ≤ 0 is (neutral) cutting-plane at x (a = g, b = gTx)

EE364b, Stanford University 4



g

x

level curves of f

gT (z − x) ≥ 0

• by evaluating g ∈ ∂f(x) we rule out a halfspace in our search for x⋆

• idea: get one bit of info (on location of x⋆) by evaluating g
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Deep cut for unconstrained minimization

• suppose we know a number f̄ with f(x) > f̄ ≥ f⋆

(e.g., the smallest value of f found so far in an algorithm)

• from f(z) ≥ f(x) + gT (z − x), we have

f(x) + gT (z − x) > f̄ =⇒ f(z) > f̄ ≥ f⋆ =⇒ z 6∈ X

so we have deep cut

gT (z − x) + f(x)− f̄ ≤ 0

EE364b, Stanford University 6



Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

f1, . . . , fm convex; X is set of feasible points

• if x not feasible, find j with fj(x) > 0, and evaluate gj ∈ ∂fj(x)

• since fj(z) ≥ fj(x) + gTj (z − x),

fj(x) + gTj (z − x) > 0 =⇒ fj(z) > 0 =⇒ z 6∈ X

i.e., any feasible z satisfies the inequality fj(x) + gTj (z − x) ≤ 0

• this gives a deep cut
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Inequality constrained problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

f0, . . . , fm : Rn → R convex; X is set of optimal points; p⋆ is optimal value

• if x is not feasible, say fj(x) > 0, we have (deep) feasibility cut

fj(x) + gTj (z − x) ≤ 0, gj ∈ ∂fj(x)

• if x is feasible, we have (neutral) objective cut

gT0 (z − x) ≤ 0, g0 ∈ ∂f0(x)

(or, deep cut gT0 (z − x) + f0(x)− f̄ ≤ 0 if f̄ ∈ [p⋆, f0(x)) is known)
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Localization algorithm

basic (conceptual) localization (or cutting-plane) algorithm:

given initial polyhedron P0 = {z | Cz � d} known to contain X

k := 0
repeat

Choose a point x(k+1) in Pk

Query the cutting-plane oracle at x(k+1)

If x(k+1) ∈ X, quit
Else, add new cutting-plane aTk+1z ≤ bk+1:

Pk+1 := Pk ∩ {z | aTk+1z ≤ bk+1}
If Pk+1 = ∅, quit
k := k + 1
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Pk

x(k+1) x(k+1)

ak+1 ak+1

Pk+1

• Pk gives our uncertainty of x⋆ at iteration k

• want to pick x(k+1) so that Pk+1 is as small as possible, no matter
what cut is made

• want x(k+1) near center of P(k)
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Example: Bisection on R

• minimize convex f : R → R

• Pk is interval

• obvious choice for query point: x(k+1) := midpoint(Pk)

bisection algorithm

given interval P0 = [l, u] containing x⋆

repeat
1. x := (l + u)/2
2. evaluate f ′(x)
3. if f ′(x) < 0, l := x; else u := x
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Pk

Pk+1

x(k+1)
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length(Pk+1) = uk+1 − lk+1 =
uk − lk

2
= (1/2)length(Pk)

and so length(Pk) = 2−klength(P0)

interpretation:

• length(Pk) measures our uncertainty in x⋆

• uncertainty is halved at each iteration; get exactly one bit of info about
x⋆ per iteration

• # steps required for uncertainty (in x⋆) ≤ r:

log2
length(P0)

r
= log2

initial uncertainty

final uncertainty
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Specific cutting-plane methods

methods vary in choice of query point

• center of gravity (CG) algorithm:
x(k+1) is center of gravity of Pk

• maximum volume ellipsoid (MVE) cutting-plane method :
x(k+1) is center of maximum volume ellipsoid contained in Pk

• Chebyshev center cutting-plane method :
x(k+1) is Chebyshev center of Pk

• analytic center cutting-plane method (ACCPM):
x(k+1) is analytic center of (inequalities defining) Pk
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Center of gravity algorithm

take x(k+1) = CG(Pk) (center of gravity)

CG(Pk) =

∫

Pk

x dx

/

∫

Pk

dx

theorem. if C ⊆ Rn convex, xcg = CG(C), g 6= 0,

vol
(

C ∩ {x | gT (x− xcg) ≤ 0}
)

≤ (1− 1/e)vol(C) ≈ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(Pk) ≤ 0.63k vol(P0)
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Convergence of CG cutting-plane method

• suppose P0 lies in ball of radius R, X includes ball of radius r
(can take X as set of ǫ-suboptimal points)

• suppose x(1), . . . , x(k) 6∈ X, so Pk ⊇ X

• we have

αnr
n ≤ vol(Pk) ≤ (0.63)k vol(P0) ≤ (0.63)kαnR

n

where αn is volume of unit ball in Rn

• so k ≤ 1.51n log2(R/r) (cf. bisection on R)
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advantages of CG-method

• guaranteed convergence

• affine-invariance

• number of steps proportional to dimension n, log of uncertainty
reduction

disadvantages

• finding x(k+1) = CG(Pk) is much harder than original problem

(but, can modify CG-method to work with approximate CG computation)
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Maximum volume ellipsoid method

• x(k+1) is center of maximum volume ellipsoid in Pk

(can compute as convex problem)

• affine-invariant

• can show vol(Pk+1) ≤ (1− 1/n)vol(Pk)

• hence can bound number of steps:

k ≤
n log(R/r)

− log(1− 1/n)
≈ n2 log(R/r)

• if cutting-plane oracle cost is not small, MVE is a good practical method
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Chebyshev center method

• x(k+1) is center of largest Euclidean ball in Pk

(can compute via LP)

• not affine invariant; sensitive to scaling
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Analytic center cutting-plane method

• x(k+1) is analytic center of Pk = {z | aTi z ≤ bi, i = 1, . . . , q}

x(k+1) = argmin
x

−

q
∑

i=1

log(bi − aTi x)

• x(k+1) can be computed using infeasible start Newton method

• works quite well in practice (more on this next lecture)
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Extensions

Multiple cuts

• oracle returns set of linear inequalities instead of just one, e.g.,

– all violated inequalities
– all inequalities (including shallow cuts)
– multiple deep cuts

• at each iteration, append (set of) new inequalities to those defining Pk

Nonlinear cuts

• use nonlinear convex inequalities instead of linear ones

• localization set no longer a polyhedron

• some methods (e.g., ACCPM) still work
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Dropping constraints

• the problem:

– number of linear inequalities defining Pk increases at each iteration
– hence, computational effort to compute x(k+1) increases

• the solution: drop or prune constraints

– drop redundant constraints
– keep only a fixed number N of (the most relevant) constraints

(can cause localization polyhedron to increase!)
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Epigraph cutting-plane method

apply cutting-plane method to epigraph form problem

minimize t
subject to f0(x) ≤ t

fi(x) ≤ 0, i = 1, . . . ,m.

with variables x ∈ Rn and t

at each (x, t), need cutting-plane oracle that separates (x, t) from (x⋆, p⋆)
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• if x(k) is infeasible for original problem and violates jth constraint, add
the cutting-plane

fj(x
(k)) + gTj (x− x(k)) ≤ 0, gj ∈ ∂fj(x

(k))

• if x(k) is feasible for original problem, add two cutting-planes

f0(x
(k)) + gT0 (x− x(k)) ≤ t, t ≤ f0(x

(k))

where g0 ∈ ∂f0(x
(k))
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PWL lower bound on convex function

• suppose we have evaluated f and a subgradient of f at x(1), . . . , x(q)

• for all z,

f(z) ≥ f(x(i)) + g(i)T (z − x(i)), i = 1, . . . , q

and so

f(z) ≥ f̂(z) = max
i=1,...,q

(

f(x(i)) + g(i)T (z − x(i))
)

.

• f̂ is a convex piecewise-linear global underestimator of f
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Lower bound

• in solving convex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Cx � d

we have evaluated some of the fi and subgradients at x(1), . . . , x(k)

• form piecewise-linear approximations f̂0, . . . , f̂m

• form PWL relaxed problem

minimize f̂0(x)

subject to f̂i(x) ≤ 0, i = 1, . . . ,m
Cx � d
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(can be solved via LP)

• optimal value is a lower bound on p⋆
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