Localization and Cutting-Plane Methods

- cutting-plane oracle
- finding cutting-planes
- localization algorithms
- specific cutting-plane methods
- epigraph cutting-plane method
- lower bounds and stopping criteria

Localization and cutting-plane methods

- based on idea of 'localizing' desired point in some set, which becomes smaller at each step
- like subgradient methods, require computation of a subgradient of objective or constraint functions at each step
- in particular, directly handle nondifferentiable convex (and quasiconvex) problems
- typically require more memory and computation per step than subgradient methods
- but can be much more efficient (in theory and practice) than subgradient methods

Cutting-plane oracle

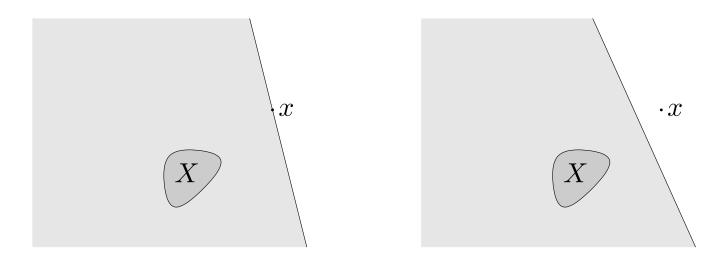
- ullet goal: find a point in convex set $X\subseteq \mathbf{R}^n$, or determine that $X=\emptyset$
- ullet our only access to or description of X is through a cutting-plane oracle
- when cutting-plane oracle is queried at $x \in \mathbb{R}^n$, it either
 - asserts that $x \in X$, or
 - returns a separating hyperplane between x and X: $a \neq 0$,

$$a^T z \le b \text{ for } z \in X, \qquad a^T x \ge b$$

• (a,b) called a *cutting-plane*, or *cut*, since it eliminates the halfspace $\{z\mid a^Tz>b\}$ from our search for a point in X

Neutral and deep cuts

- if $a^Tx = b$ (x is on boundary of halfspace that is cut) cutting-plane is called *neutral cut*
- if $a^Tx > b$ (x lies in interior of halfspace that is cut), cutting-plane is called $deep\ cut$



EE364b, Stanford University

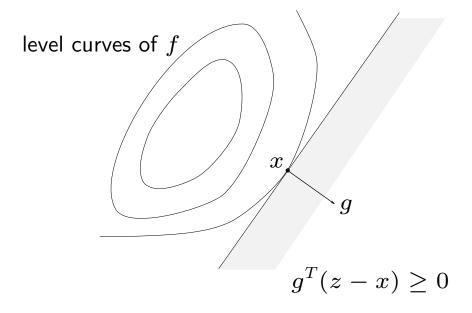
Unconstrained minimization

- minimize convex $f: \mathbf{R}^n \to \mathbf{R}$
- X is set of optimal points (minimizers)
- given x, find $g \in \partial f(x)$
- from $f(z) \ge f(x) + g^T(z x)$ we conclude

$$g^T(z-x) > 0 \implies f(z) > f(x)$$

i.e., all points in halfspace $g^T(z-x) \geq 0$ are worse than x, and in particular not optimal

• so $g^T(z-x) \leq 0$ is (neutral) cutting-plane at x (a=g, $b=g^Tx$)



- ullet by evaluating $g\in\partial f(x)$ we rule out a halfspace in our search for x^\star
- idea: get one bit of info (on location of x^*) by evaluating g

Deep cut for unconstrained minimization

- suppose we know a number \overline{f} with $f(x) > \overline{f} \geq f^{\star}$ (e.g., the smallest value of f found so far in an algorithm)
- from $f(z) \ge f(x) + g^T(z x)$, we have

$$f(x) + g^{T}(z - x) > \bar{f} \implies f(z) > \bar{f} \ge f^{\star} \implies z \notin X$$

so we have deep cut

$$g^{T}(z-x) + f(x) - \bar{f} \le 0$$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

 f_1, \ldots, f_m convex; X is set of feasible points

- if x not feasible, find j with $f_j(x) > 0$, and evaluate $g_j \in \partial f_j(x)$
- since $f_j(z) \ge f_j(x) + g_j^T(z-x)$,

$$f_j(x) + g_j^T(z - x) > 0 \implies f_j(z) > 0 \implies z \notin X$$

i.e., any feasible z satisfies the inequality $f_j(x) + g_j^T(z-x) \leq 0$

this gives a deep cut

Inequality constrained problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

 $f_0, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ convex; X is set of optimal points; p^* is optimal value

• if x is not feasible, say $f_j(x) > 0$, we have (deep) feasibility cut

$$f_j(x) + g_j^T(z - x) \le 0, \qquad g_j \in \partial f_j(x)$$

 \bullet if x is feasible, we have (neutral) objective cut

$$g_0^T(z-x) \le 0, \qquad g_0 \in \partial f_0(x)$$

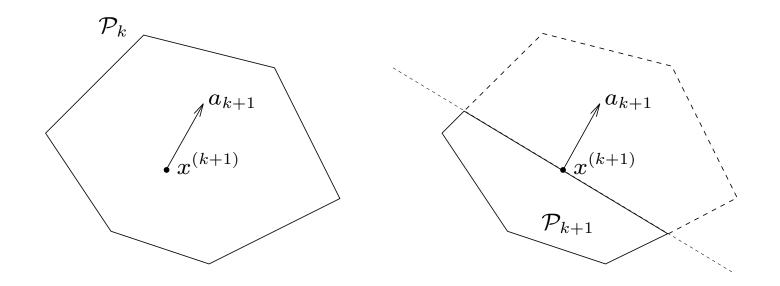
(or, deep cut $g_0^T(z-x) + f_0(x) - \bar{f} \leq 0$ if $\bar{f} \in [p^*, f_0(x))$ is known)

Localization algorithm

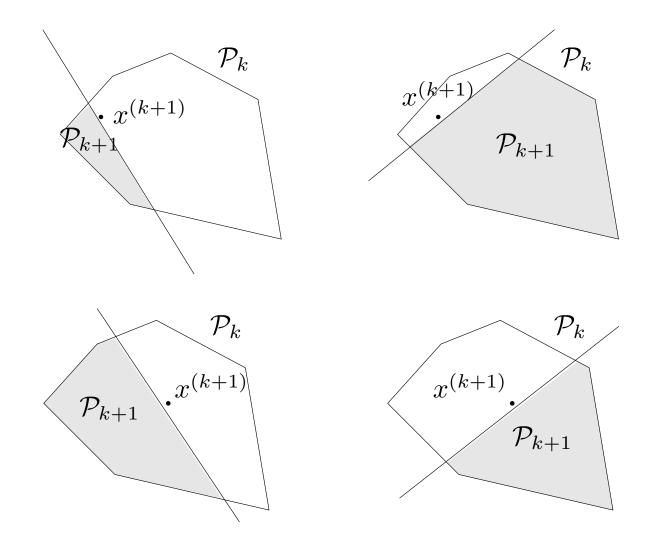
basic (conceptual) localization (or cutting-plane) algorithm:

```
given initial polyhedron \mathcal{P}_0 = \{z \mid Cz \preceq d\} known to contain X k := 0 repeat

Choose a point x^{(k+1)} in \mathcal{P}_k
Query the cutting-plane oracle at x^{(k+1)}
If x^{(k+1)} \in X, quit
Else, add new cutting-plane a_{k+1}^T z \leq b_{k+1}:
\mathcal{P}_{k+1} := \mathcal{P}_k \cap \{z \mid a_{k+1}^T z \leq b_{k+1}\}
If \mathcal{P}_{k+1} = \emptyset, quit k := k+1
```



- \mathcal{P}_k gives our uncertainty of x^* at iteration k
- ullet want to pick $x^{(k+1)}$ so that \mathcal{P}_{k+1} is as small as possible, no matter what cut is made
- ullet want $x^{(k+1)}$ near center of $\mathcal{P}^{(k)}$



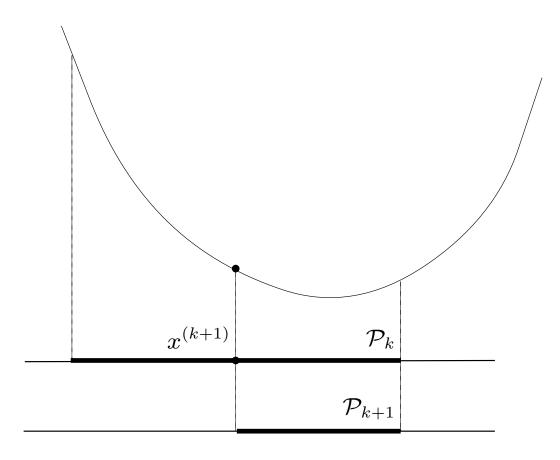
Example: Bisection on R

- minimize convex $f : \mathbf{R} \to \mathbf{R}$
- ullet \mathcal{P}_k is interval
- obvious choice for query point: $x^{(k+1)} := \mathsf{midpoint}(\mathcal{P}_k)$

bisection algorithm

given interval $\mathcal{P}_0 = [l, u]$ containing x^\star repeat

- 1. x := (l + u)/2
- 2. evaluate f'(x)
- 3. if f'(x) < 0, l := x; else u := x



$$\operatorname{length}(\mathcal{P}_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = (1/2)\operatorname{length}(\mathcal{P}_k)$$
 and so
$$\operatorname{length}(\mathcal{P}_k) = 2^{-k}\operatorname{length}(\mathcal{P}_0)$$

interpretation:

- length(\mathcal{P}_k) measures our uncertainty in x^*
- uncertainty is halved at each iteration; get exactly one bit of info about x^\star per iteration
- # steps required for uncertainty (in x^*) $\leq r$:

$$\log_2 \frac{\operatorname{length}(\mathcal{P}_0)}{r} = \log_2 \frac{\operatorname{initial uncertainty}}{\operatorname{final uncertainty}}$$

Specific cutting-plane methods

methods vary in choice of query point

- center of gravity (CG) algorithm: $x^{(k+1)}$ is center of gravity of \mathcal{P}_k
- maximum volume ellipsoid (MVE) cutting-plane method: $x^{(k+1)}$ is center of maximum volume ellipsoid contained in \mathcal{P}_k
- Chebyshev center cutting-plane method: $x^{(k+1)}$ is Chebyshev center of \mathcal{P}_k
- analytic center cutting-plane method (ACCPM): $x^{(k+1)}$ is analytic center of (inequalities defining) \mathcal{P}_k

Center of gravity algorithm

take $x^{(k+1)} = \mathsf{CG}(\mathcal{P}_k)$ (center of gravity)

$$CG(\mathcal{P}_k) = \int_{\mathcal{P}_k} x \, dx / \int_{\mathcal{P}_k} dx$$

theorem. if $C \subseteq \mathbf{R}^n$ convex, $x_{cg} = CG(C)$, $g \neq 0$,

$$\operatorname{vol}(C \cap \{x \mid g^T(x - x_{cg}) \le 0\}) \le (1 - 1/e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)$$

(independent of dimension n)

hence in CG algorithm, $\mathbf{vol}(\mathcal{P}_k) \leq 0.63^k \, \mathbf{vol}(\mathcal{P}_0)$

Convergence of CG cutting-plane method

- suppose \mathcal{P}_0 lies in ball of radius R, X includes ball of radius r (can take X as set of ϵ -suboptimal points)
- suppose $x^{(1)}, \ldots, x^{(k)} \not\in X$, so $\mathcal{P}_k \supseteq X$
- we have

$$\alpha_n r^n \le \operatorname{vol}(\mathcal{P}_k) \le (0.63)^k \operatorname{vol}(\mathcal{P}_0) \le (0.63)^k \alpha_n R^n$$

where α_n is volume of unit ball in \mathbb{R}^n

• so $k \le 1.51 n \log_2(R/r)$ (cf. bisection on **R**)

advantages of CG-method

- guaranteed convergence
- affine-invariance
- number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

• finding $x^{(k+1)} = \mathsf{CG}(\mathcal{P}_k)$ is **much harder** than original problem (but, can modify CG-method to work with approximate CG computation)

Maximum volume ellipsoid method

- $x^{(k+1)}$ is center of maximum volume ellipsoid in \mathcal{P}_k (can compute as convex problem)
- affine-invariant
- can show $\mathbf{vol}(\mathcal{P}_{k+1}) \leq (1 1/n) \mathbf{vol}(\mathcal{P}_k)$
- hence can bound number of steps:

$$k \le \frac{n \log(R/r)}{-\log(1 - 1/n)} \approx n^2 \log(R/r)$$

• if cutting-plane oracle cost is not small, MVE is a good practical method

Chebyshev center method

- $x^{(k+1)}$ is center of largest Euclidean ball in \mathcal{P}_k (can compute via LP)
- not affine invariant; sensitive to scaling

Analytic center cutting-plane method

• $x^{(k+1)}$ is analytic center of $\mathcal{P}_k = \{z \mid a_i^T z \leq b_i, i = 1, \dots, q\}$

$$x^{(k+1)} = \underset{x}{\operatorname{argmin}} - \sum_{i=1}^{q} \log(b_i - a_i^T x)$$

- ullet $x^{(k+1)}$ can be computed using infeasible start Newton method
- works quite well in practice (more on this next lecture)

Extensions

Multiple cuts

- ullet oracle returns set of linear inequalities instead of just one, e.g.,
 - all violated inequalities
 - all inequalities (including shallow cuts)
 - multiple deep cuts
- ullet at each iteration, append (set of) new inequalities to those defining \mathcal{P}_k

Nonlinear cuts

- use nonlinear convex inequalities instead of linear ones
- localization set no longer a polyhedron
- ullet some methods (e.g., ACCPM) still work

Dropping constraints

- the problem:
 - number of linear inequalities defining \mathcal{P}_k increases at each iteration
 - hence, computational effort to compute $x^{(k+1)}$ increases
- the solution: drop or prune constraints
 - drop redundant constraints
 - keep only a fixed number N of (the most relevant) constraints (can cause localization polyhedron to increase!)

Epigraph cutting-plane method

apply cutting-plane method to epigraph form problem

minimize
$$t$$
 subject to $f_0(x) \leq t$ $f_i(x) \leq 0, \quad i = 1, \dots, m.$

with variables $x \in \mathbf{R}^n$ and t

at each (x,t), need cutting-plane oracle that separates (x,t) from (x^\star,p^\star)

ullet if $x^{(k)}$ is infeasible for original problem and violates jth constraint, add the cutting-plane

$$f_j(x^{(k)}) + g_j^T(x - x^{(k)}) \le 0, \qquad g_j \in \partial f_j(x^{(k)})$$

• if $x^{(k)}$ is feasible for original problem, add two cutting-planes

$$f_0(x^{(k)}) + g_0^T(x - x^{(k)}) \le t, \qquad t \le f_0(x^{(k)})$$

where $g_0 \in \partial f_0(x^{(k)})$

PWL lower bound on convex function

- ullet suppose we have evaluated f and a subgradient of f at $x^{(1)},\dots,x^{(q)}$
- \bullet for all z,

$$f(z) \ge f(x^{(i)}) + g^{(i)T}(z - x^{(i)}), \quad i = 1, \dots, q$$

and so

$$f(z) \ge \hat{f}(z) = \max_{i=1,\dots,q} \left(f(x^{(i)}) + g^{(i)T}(z - x^{(i)}) \right).$$

ullet \hat{f} is a convex piecewise-linear global underestimator of f

Lower bound

• in solving convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Cx \leq d$

we have evaluated some of the f_i and subgradients at $x^{(1)}, \ldots, x^{(k)}$

- ullet form piecewise-linear approximations $\hat{f}_0,\ldots,\hat{f}_m$
- form PWL relaxed problem

minimize
$$\hat{f}_0(x)$$
 subject to $\hat{f}_i(x) \leq 0, \quad i = 1, \dots, m$ $Cx \leq d$

(can be solved via LP)

 \bullet optimal value is a lower bound on p^{\star}