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Localization and cutting-plane methods

e based on idea of ‘localizing’ desired point in some set, which becomes
smaller at each step

e like subgradient methods, require computation of a subgradient of
objective or constraint functions at each step

e in particular, directly handle nondifferentiable convex (and quasiconvex)
problems

e typically require more memory and computation per step than
subgradient methods

e but can be much more efficient (in theory and practice) than
subgradient methods

EE364b, Stanford University



Cutting-plane oracle

e goal: find a point in convex set X C R", or determine that X = ()
e our only access to or description of X is through a cutting-plane oracle

e when cutting-plane oracle is queried at x € R", it either

— asserts that z € X, or
— returns a separating hyperplane between x and X: a # 0,

angbforzeX, alz >0

e (a,b) called a cutting-plane, or cut, since it eliminates the halfspace
{z|a'z > b} from our search for a point in X
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Neutral and deep cuts
e if alx = b (z is on boundary of halfspace that is cut) cutting-plane is

called neutral cut

o if alx > b (x lies in interior of halfspace that is cut), cutting-plane is
called deep cut
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Unconstrained minimization
e minimize convex f : R" -+ R
e X is set of optimal points (minimizers)
e given z, find g € Of(x)
e from f(z) > f(x) + g' (2 — z) we conclude
g (z—2)>0 = f(2)> f(x)

i.e., all points in halfspace g (2 — ) > 0 are worse than z, and in
particular not optimal

e so gl (2 — ) <0 is (neutral) cutting-plane at z (a = g, b = g’ x)
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level curves of f

9 (z—2) >0

e by evaluating g € 9f(x) we rule out a halfspace in our search for z*

e idea: get one bit of info (on location of z*) by evaluating g
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Deep cut for unconstrained minimization

e suppose we know a number f with f(z) > f > f*
(e.g., the smallest value of f found so far in an algorithm)

o from f(z) > f(z) + g* (2 — x), we have
f@)+g"z—a)>f = fla)>f>f" = 2¢X

so we have deep cut

g (z—z)+ f(z) - f <0

EE364b, Stanford University



Feasibility problem

find x
subject to  fi(x) <0, i=1,...,m

f1,.-., fm convex; X is set of feasible points
e if x not feasible, find j with f;(z) > 0, and evaluate g; € 0f;(x)
o since f;(z) > fj(z) + g (z — ),

fj(a:)+g;fp(z—:v)>0 — fi(z) >0 = =z2¢&X

i.e., any feasible z satisfies the inequality f;(z) + gj (z —z) < 0

e this gives a deep cut
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Inequality constrained problem

minimize  fo(z)
subject to  fi(z) <0, i=1,...,m

fo,..., fm : R" = R convex; X is set of optimal points; p* is optimal value

e if x is not feasible, say f;(x) > 0, we have (deep) feasibility cut
fi(x) +gj (z—2) <0,  g; € dfj(x)
e if x is feasible, we have (neutral) objective cut

gl (z—x) <0,  go€dfo(x)

(or, deep cut gl (z — x) + fo(z) — f <O if f € [p*, fo(x)) is known)

EE364b, Stanford University 8



Localization algorithm
basic (conceptual) localization (or cutting-plane) algorithm:

given initial polyhedron Py = {z | C'z < d} known to contain X
k:=0
repeat

Choose a point 1) in P,

Query the cutting-plane oracle at z(*+1)

If z(F+1) € X, quit

Else, add new cutting-plane a}_, ;2 < bjy1:

Pk_|_1 = Pk M {Z | af_l_lz S bk_|_1}
If Prir1 =0, quit
k=k+1
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e P gives our uncertainty of z* at iteration k

e want to pick z(¥*t1) so that Py is as small as possible, no matter
what cut is made

e want z(*t1) near center of P(¥)
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Example: Bisection on R

e minimize convex f : R —+ R
e P is interval

e obvious choice for query point: 1) .— midpoint(Py)

bisection algorithm
given interval Py = I, u] containing x*
repeat
L.x:=I+u)/
2. evaluate f'(x

2
)
3. if f/(x) <0, [:

—qx:elseu:=x
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Uk — Ui

length(Prr1) = g1 — lpr1 = = (1/2)length(Py)

and so length(Py) = 2_klength(770)
interpretation:

e length(Py) measures our uncertainty in x*

e uncertainty is halved at each iteration; get exactly one bit of info about
x™ per iteration

e 7 steps required for uncertainty (in z*) < r:

length(Pp) initial uncertainty

logs = log;

final uncertainty
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Specific cutting-plane methods

methods vary in choice of query point

e center of gravity (CG) algorithm:
21 is center of gravity of Pj

e maximum volume ellipsoid (MVE) cutting-plane method:
2(*+1) is center of maximum volume ellipsoid contained in Pj

e Chebyshev center cutting-plane method:
z(#+1) is Chebyshev center of Py

e analytic center cutting-plane method (ACCPM):
z(*+1) is analytic center of (inequalities defining) Py

EE364b, Stanford University

15



Center of gravity algorithm

take z(¥*1) = CG(P},) (center of gravity)

CG(Pk)—kadac//Pkdx

theorem. if C' C R" convex, z; = CG(C), g # 0,
vol (CN{z|g" (z — z¢) <0}) < (1—1/e)vol(C) =~ 0.63 vol(C)

(independent of dimension n)

hence in CG algorithm, vol(P;) < 0.63* vol(Py)
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Convergence of CG cutting-plane method

e suppose Pg lies in ball of radius R, X includes ball of radius r
(can take X as set of e-suboptimal points)

e suppose zV ... 2®) & X so P DX
e we have
anr™ < vol(Py) < (0.63)* vol(Py) < (0.63)*a,, R™
where «,, is volume of unit ball in R"

e so k < 1.51nlogy(R/r) (cf. bisection on R)
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advantages of CG-method

e guaranteed convergence

e affine-invariance

e number of steps proportional to dimension n, log of uncertainty
reduction

disadvantages

e finding 2(**1) = CG(P}) is much harder than original problem

(but, can modify CG-method to work with approximate CG computation)
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Maximum volume ellipsoid method

o z(F*t1) is center of maximum volume ellipsoid in Py
(can compute as convex problem)

e affine-invariant
e can show vol(Py11) < (1 —1/n)vol(Py)
e hence can bound number of steps:

nlog(R/7)
H= —log(1 — 1/n)

~ n?log(R/r)

e if cutting-plane oracle cost is not small, MVE is a good practical method
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Chebyshev center method

o z(F*t1) is center of largest Euclidean ball in Py
(can compute via LP)

e not affine invariant; sensitive to scaling
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Analytic center cutting-plane method

o z(**t1) is analytic center of P, = {z | alz < b;, i=1,...,q}

q
* Y = argmin — Z log(b; — a} x)
v i=1

o 2t can be computed using infeasible start Newton method

e works quite well in practice (more on this next lecture)
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Extensions
Multiple cuts

e oracle returns set of linear inequalities instead of just one, e.g.,

— all violated inequalities

— all inequalities (including shallow cuts)
— multiple deep cuts

e at each iteration, append (set of) new inequalities to those defining P
Nonlinear cuts

e use nonlinear convex inequalities instead of linear ones
e |localization set no longer a polyhedron

e some methods (e.g., ACCPM) still work

EE364b, Stanford University 22



Dropping constraints

e the problem:
— number of linear inequalities defining P increases at each iteration
— hence, computational effort to compute z(*+1) increases

e the solution: drop or prune constraints

— drop redundant constraints
— keep only a fixed number NV of (the most relevant) constraints
(can cause localization polyhedron to increase!)
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Epigraph cutting-plane method

apply cutting-plane method to epigraph form problem

minimize t
subject to  fo(x)

fi(x)

VAVA

t
0, 2=1,...,m.

with variables £ € R" and ¢

at each (x,t), need cutting-plane oracle that separates (z,%) from (x*, p*)
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e if (¥ is infeasible for original problem and violates jth constraint, add
the cutting-plane

[+ g7 (@ —a®) <0, g5 € af;(@®)

o if 2(F) is feasible for original problem, add two cutting-planes
fo™) + g5 (x —2®) <t, < fo(a™)

where gg € 0fo(x*))
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PWL lower bound on convex function

e suppose we have evaluated f and a subgradient of f at z(1), ... z(®

e for all z,
f(2) > f@D) + gD (z—2W), i=1,... ¢

and so

A

e f is a convex piecewise-linear global underestimator of f
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Lower bound

e in solving convex problem

minimize  fo(z)
subject to  f;(x
x

<0, 2=1,....m
C d

)
<

we have evaluated some of the f; and subgradients at z(1), . ..

A

e form piecewise-linear approximations fo, s fm
e form PWL relaxed problem

minimize  fo(z)
subject to  f;(x)
Cz =

<0, 2=1,....,m
d
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(can be solved via LP)

e optimal value is a lower bound on p*
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