
Monotone Operator Splitting Methods

Stephen Boyd (with help from Neal Parikh and Eric Chu)

EE364b, Stanford University

1



Outline

1 Operator splitting

2 Douglas-Rachford splitting

3 Consensus optimization

Operator splitting 2



Operator splitting

• want to solve 0 ∈ F (x) with F maximal monotone

• main idea: write F as F = A+B, with A and B maximal monotone

• called operator splitting

• solve using methods that require evaluation of resolvents

RA = (I + λA)−1, RB = (I + λB)−1

(or Cayley operators CA = 2RA − I and CB = 2RB − I)

• useful when RA and RB can be evaluated more easily than RF
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Main result

• A, B maximal monotone, so Cayley operators CA, CB nonexpansive

• hence CACB nonexpansive

• key result:

0 ∈ A(x) +B(x) ⇐⇒ CACB(z) = z, x = RB(z)

• so solutions of 0 ∈ A(x) +B(x) can be found from fixed points of
nonexpansive operator CACB
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Proof of main result

• write CACB(z) = z and x = RB(z) as

x = RB(z), z̃ = 2x− z, x̃ = RA(z̃), z = 2x̃− z̃

• subtract 2nd & 4th equations to conclude x = x̃

• 4th equation is then 2x = z̃ + z

• now add x+ λB(x) ∋ z and x+ λA(x) ∋ z̃ to get

2x+ λ(A(x) +B(x)) ∋ z̃ + z = 2x

• hence A(x) +B(x) ∋ 0

• argument goes other way (but we don’t need it)
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Peaceman-Rachford and Douglas-Rachford splitting

• Peaceman-Rachford splitting is undamped iteration

zk+1 = CACB(z
k)

doesn’t converge in general case; need CA or CB to be contraction

• Douglas-Rachford splitting is damped iteration

zk+1 := (1/2)(I + CACB)(z
k)

always converges when 0 ∈ A(x) +B(x) has solution

• these methods trace back to the mid-1950s (!!)
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Douglas-Rachford splitting

write D-R iteration zk+1 := (1/2)(I + CACB)(z
k) as

xk+1/2 := RB(z
k)

zk+1/2 := 2xk+1/2 − zk

xk+1 := RA(z
k+1/2)

zk+1 := zk + xk+1 − xk+1/2

last update follows from

zk+1 := (1/2)(2xk+1 − zk+1/2) + (1/2)zk

= xk+1 − (1/2)(2xk+1/2 − zk) + (1/2)zk

= zk + xk+1 − xk+1/2

• can consider xk+1 − xk+1/2 as a residual

• zk is running sum of residuals
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Douglas-Rachford algorithm

• many ways to rewrite/rearrange D-R algorithm

• equivalent to many other algorithms; often not obvious

• need very little: A, B maximal monotone; solution exists

• A and B are handled separately (via RA and RB); they are ‘uncoupled’
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Alternating direction method of multipliers

to minimize f(x) + g(x), we solve 0 ∈ ∂f(x) + ∂g(x)

with A(x) = ∂g(x), B(x) = ∂f(x), D-R is

xk+1/2 := argmin
x

(

f(x) + (1/2λ)‖x− zk‖22
)

zk+1/2 := 2xk+1/2 − zk

xk+1 := argmin
x

(

g(x) + (1/2λ)‖x− zk+1/2‖22

)

zk+1 := zk + xk+1 − xk+1/2

a special case of the alternating direction method of multipliers (ADMM)
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Constrained optimization

• constrained convex problem:

minimize f(x)
subject to x ∈ C

• take B(x) = ∂f(x) and A(x) = ∂IC(x) = NC(x)

• so RB(z) = proxf (z) and RA(z) = ΠC(z)

• D-R is

xk+1/2 := proxf (z
k)

zk+1/2 := 2xk+1/2 − zk

xk+1 := ΠC(z
k+1/2)

zk+1 := zk + xk+1 − xk+1/2
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Dykstra’s alternating projections

• find a point in the intersection of convex sets C, D

• D-R gives algorithm

xk+1/2 := ΠC(z
k)

zk+1/2 := 2xk+1/2 − zk

xk+1 := ΠD(zk+1/2)

zk+1 := zk + xk+1 − xk+1/2

• this is Dykstra’s alternating projections algorithm

• much faster than classical alternating projections
(e.g., for C, D polyhedral, converges in finite number of steps)
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Positive semidefinite matrix completion

• some entries of matrix in Sn known; find values for others so completed
matrix is PSD

• C = Sn
+, D = {X | Xij = Xknown

ij , (i, j) ∈ K}

• projection onto C: find eigendecomposition X =
∑n

i=1
λiqiq

T
i ; then

ΠC(X) =

n
∑

i=1

max{0, λi}qiq
T
i

• projection onto D: set specified entries to known values
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Positive semidefinite matrix completion

specific example: 50× 50 matrix missing about half of its entries

• initialize Z0 = 0
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Positive semidefinite matrix completion
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• blue: alternating projections; red: D-R

• Xk+1/2 ∈ C, Xk+1 ∈ D
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Consensus optimization

• want to minimize
∑N

i=1
fi(x)

• rewrite as consensus problem

minimize
∑N

i=1
fi(xi)

subject to x ∈ C = {(x1, . . . , xN ) | x1 = · · · = xN}

• D-R consensus optimization:

xk+1/2 := proxf (z
k)

zk+1/2 := 2xk+1/2 − zk

xk+1 := ΠC(z
k+1/2)

zk+1 := zk + xk+1 − xk+1/2
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Douglas-Rachford consensus

• xk+1/2-update splits into N separate (parallel) problems:

x
k+1/2
i := argmin

zi

(

fi(zi) + (1/2λ)‖zi − zki ‖
2
2

)

, i = 1, . . . , N

• xk+1-update is averaging:

xk+1
i := zk+1/2 = (1/N)

N
∑

i=1

z
k+1/2
i , i = 1, . . . , N

• zk+1-update becomes

zk+1
i = zki + zk+1/2 − x

k+1/2
i

= zki + 2xk+1/2 − zk − x
k+1/2
i

= zki + (xk+1/2 − x
k+1/2
i ) + (xk+1/2 − zk)

• taking average of last equation, we get zk+1 = xk+1/2
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Douglas-Rachford consensus

• renaming xk+1/2 as xk+1, D-R consensus becomes

xk+1
i := proxfi(z

k
i )

zk+1
i := zki + (xk+1 − xk+1

i ) + (xk+1 − xk)

• subsystem (local) state: x, zi, xi

• gather xi’s to compute x, which is then scattered
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Distributed QP

• we use D-R consensus to solve QP

minimize f(x) =
∑N

i=1
(1/2)‖Aix− bi‖

2
2

subject to Fix ≤ gi, i = 1, . . . , N

with variable x ∈ Rn

• each of N processors will handle an objective term, block of constraints

• coordinate N QP solvers to solve big QP
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Distributed QP

• D-R consensus algorithm is

xk+1
i := argmin

Fixi≤gi

(

(1/2)‖Aixi − bi‖
2
2 + (1/2λ)‖xi − zki ‖

2
2

)

zk+1
i := zki + (xk+1 − xk+1

i ) + (xk+1 − xk),

• first step is N parallel QP solves

• second step gives coordination, to solve large problem

• inequality constraint residual is 1T (Fxk − g)+
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Distributed QP

example with n = 100 variables, N = 10 subsystems
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