Monotone Operator Splitting Methods

Stephen Boyd (with help from Neal Parikh and Eric Chu)
EE364b, Stanford University

Outline

(1) Operator splitting
(2) Douglas-Rachford splitting
(3) Consensus optimization

Operator splitting

Operator splitting

- want to solve $0 \in F(x)$ with F maximal monotone
- main idea: write F as $F=A+B$, with A and B maximal monotone
- called operator splitting
- solve using methods that require evaluation of resolvents

$$
R_{A}=(I+\lambda A)^{-1}, \quad R_{B}=(I+\lambda B)^{-1}
$$

(or Cayley operators $C_{A}=2 R_{A}-I$ and $C_{B}=2 R_{B}-I$)

- useful when R_{A} and R_{B} can be evaluated more easily than R_{F}

Main result

- A, B maximal monotone, so Cayley operators C_{A}, C_{B} nonexpansive
- hence $C_{A} C_{B}$ nonexpansive
- key result:

$$
0 \in A(x)+B(x) \Longleftrightarrow C_{A} C_{B}(z)=z, \quad x=R_{B}(z)
$$

- so solutions of $0 \in A(x)+B(x)$ can be found from fixed points of nonexpansive operator $C_{A} C_{B}$

Proof of main result

- write $C_{A} C_{B}(z)=z$ and $x=R_{B}(z)$ as

$$
x=R_{B}(z), \quad \tilde{z}=2 x-z, \quad \tilde{x}=R_{A}(\tilde{z}), \quad z=2 \tilde{x}-\tilde{z}
$$

- subtract 2 nd $\& 4$ th equations to conclude $x=\tilde{x}$
- 4th equation is then $2 x=\tilde{z}+z$
- now add $x+\lambda B(x) \ni z$ and $x+\lambda A(x) \ni \tilde{z}$ to get

$$
2 x+\lambda(A(x)+B(x)) \ni \tilde{z}+z=2 x
$$

- hence $A(x)+B(x) \ni 0$
- argument goes other way (but we don't need it)

Outline

(1) Operator splitting

(2) Douglas-Rachford splitting
(3) Consensus optimization

Douglas-Rachford splitting

Peaceman-Rachford and Douglas-Rachford splitting

- Peaceman-Rachford splitting is undamped iteration

$$
z^{k+1}=C_{A} C_{B}\left(z^{k}\right)
$$

doesn't converge in general case; need C_{A} or C_{B} to be contraction

- Douglas-Rachford splitting is damped iteration

$$
z^{k+1}:=(1 / 2)\left(I+C_{A} C_{B}\right)\left(z^{k}\right)
$$

always converges when $0 \in A(x)+B(x)$ has solution

- these methods trace back to the mid-1950s (!!)

Douglas-Rachford splitting

write D-R iteration $z^{k+1}:=(1 / 2)\left(I+C_{A} C_{B}\right)\left(z^{k}\right)$ as

$$
\begin{aligned}
x^{k+1 / 2} & :=R_{B}\left(z^{k}\right) \\
z^{k+1 / 2} & :=2 x^{k+1 / 2}-z^{k} \\
x^{k+1} & :=R_{A}\left(z^{k+1 / 2}\right) \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

last update follows from

$$
\begin{aligned}
z^{k+1} & :=(1 / 2)\left(2 x^{k+1}-z^{k+1 / 2}\right)+(1 / 2) z^{k} \\
& =x^{k+1}-(1 / 2)\left(2 x^{k+1 / 2}-z^{k}\right)+(1 / 2) z^{k} \\
& =z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

- can consider $x^{k+1}-x^{k+1 / 2}$ as a residual
- z^{k} is running sum of residuals

Douglas-Rachford algorithm

- many ways to rewrite/rearrange D-R algorithm
- equivalent to many other algorithms; often not obvious
- need very little: A, B maximal monotone; solution exists
- A and B are handled separately (via R_{A} and R_{B}); they are 'uncoupled'

Alternating direction method of multipliers

to minimize $f(x)+g(x)$, we solve $0 \in \partial f(x)+\partial g(x)$
with $A(x)=\partial g(x), B(x)=\partial f(x), \mathrm{D}-\mathrm{R}$ is

$$
\begin{aligned}
x^{k+1 / 2} & :=\underset{x}{\operatorname{argmin}}\left(f(x)+(1 / 2 \lambda)\left\|x-z^{k}\right\|_{2}^{2}\right) \\
z^{k+1 / 2} & :=2 x^{k+1 / 2}-z^{k} \\
x^{k+1} & :=\underset{x}{\operatorname{argmin}}\left(g(x)+(1 / 2 \lambda)\left\|x-z^{k+1 / 2}\right\|_{2}^{2}\right) \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

a special case of the alternating direction method of multipliers (ADMM)

Constrained optimization

- constrained convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

- take $B(x)=\partial f(x)$ and $A(x)=\partial I_{C}(x)=N_{C}(x)$
- so $R_{B}(z)=\operatorname{prox}_{f}(z)$ and $R_{A}(z)=\Pi_{C}(z)$
- $\mathrm{D}-\mathrm{R}$ is

$$
\begin{aligned}
x^{k+1 / 2} & :=\operatorname{prox}_{f}\left(z^{k}\right) \\
z^{k+1 / 2} & :=2 x^{k+1 / 2}-z^{k} \\
x^{k+1} & :=\Pi_{C}\left(z^{k+1 / 2}\right) \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

Dykstra's alternating projections

- find a point in the intersection of convex sets C, D
- D-R gives algorithm

$$
\begin{aligned}
x^{k+1 / 2} & :=\Pi_{C}\left(z^{k}\right) \\
z^{k+1 / 2} & :=2 x^{k+1 / 2}-z^{k} \\
x^{k+1} & :=\Pi_{D}\left(z^{k+1 / 2}\right) \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

- this is Dykstra's alternating projections algorithm
- much faster than classical alternating projections (e.g., for C, D polyhedral, converges in finite number of steps)

Positive semidefinite matrix completion

- some entries of matrix in \mathbf{S}^{n} known; find values for others so completed matrix is PSD
- $C=\mathbf{S}_{+}^{n}, D=\left\{X \mid X_{i j}=X_{i j}^{\text {known }},(i, j) \in \mathcal{K}\right\}$
- projection onto C : find eigendecomposition $X=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}$; then

$$
\Pi_{C}(X)=\sum_{i=1}^{n} \max \left\{0, \lambda_{i}\right\} q_{i} q_{i}^{T}
$$

- projection onto D : set specified entries to known values

Positive semidefinite matrix completion

specific example: 50×50 matrix missing about half of its entries

- initialize $Z^{0}=0$

Positive semidefinite matrix completion

- blue: alternating projections; red: D-R
- $X^{k+1 / 2} \in C, X^{k+1} \in D$

Outline

(1) Operator splitting

(2) Douglas-Rachford splitting

(3) Consensus optimization

Consensus optimization

- want to minimize $\sum_{i=1}^{N} f_{i}(x)$
- rewrite as consensus problem

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} f_{i}\left(x_{i}\right) \\
\text { subject to } & x \in C=\left\{\left(x_{1}, \ldots, x_{N}\right) \mid x_{1}=\cdots=x_{N}\right\}
\end{array}
$$

- D-R consensus optimization:

$$
\begin{aligned}
x^{k+1 / 2} & :=\operatorname{prox}_{f}\left(z^{k}\right) \\
z^{k+1 / 2} & :=2 x^{k+1 / 2}-z^{k} \\
x^{k+1} & :=\Pi_{C}\left(z^{k+1 / 2}\right) \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{k+1 / 2}
\end{aligned}
$$

Douglas-Rachford consensus

- $x^{k+1 / 2}$-update splits into N separate (parallel) problems:

$$
x_{i}^{k+1 / 2}:=\underset{z_{i}}{\operatorname{argmin}}\left(f_{i}\left(z_{i}\right)+(1 / 2 \lambda)\left\|z_{i}-z_{i}^{k}\right\|_{2}^{2}\right), \quad i=1, \ldots, N
$$

- x^{k+1}-update is averaging:

$$
x_{i}^{k+1}:=\quad \bar{z}^{k+1 / 2}=(1 / N) \sum_{i=1}^{N} z_{i}^{k+1 / 2}, \quad i=1, \ldots, N
$$

- z^{k+1}-update becomes

$$
\begin{aligned}
z_{i}^{k+1} & =z_{i}^{k}+\bar{z}^{k+1 / 2}-x_{i}^{k+1 / 2} \\
& =z_{i}^{k}+2 \bar{x}^{k+1 / 2}-\bar{z}^{k}-x_{i}^{k+1 / 2} \\
& =z_{i}^{k}+\left(\bar{x}^{k+1 / 2}-x_{i}^{k+1 / 2}\right)+\left(\bar{x}^{k+1 / 2}-\bar{z}^{k}\right)
\end{aligned}
$$

- taking average of last equation, we get $\bar{z}^{k+1}=\bar{x}^{k+1 / 2}$

Douglas-Rachford consensus

- renaming $x^{k+1 / 2}$ as x^{k+1}, D-R consensus becomes

$$
\begin{aligned}
x_{i}^{k+1} & :=\operatorname{prox}_{f_{i}}\left(z_{i}^{k}\right) \\
z_{i}^{k+1} & :=z_{i}^{k}+\left(\bar{x}^{k+1}-x_{i}^{k+1}\right)+\left(\bar{x}^{k+1}-\bar{x}^{k}\right)
\end{aligned}
$$

- subsystem (local) state: \bar{x}, z_{i}, x_{i}
- gather x_{i} 's to compute \bar{x}, which is then scattered

Distributed QP

- we use D-R consensus to solve QP

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=\sum_{i=1}^{N}(1 / 2)\left\|A_{i} x-b_{i}\right\|_{2}^{2} \\
\text { subject to } & F_{i} x \leq g_{i}, \quad i=1, \ldots, N
\end{array}
$$

with variable $x \in \mathbf{R}^{n}$

- each of N processors will handle an objective term, block of constraints
- coordinate N QP solvers to solve big QP

Distributed QP

- D-R consensus algorithm is

$$
\begin{aligned}
x_{i}^{k+1} & :={\underset{F}{i}}^{\operatorname{argmin} \leq g_{i}}\left((1 / 2)\left\|A_{i} x_{i}-b_{i}\right\|_{2}^{2}+(1 / 2 \lambda)\left\|x_{i}-z_{i}^{k}\right\|_{2}^{2}\right) \\
z_{i}^{k+1} & :=z_{i}^{k}+\left(\bar{x}^{k+1}-x_{i}^{k+1}\right)+\left(\bar{x}^{k+1}-\bar{x}^{k}\right),
\end{aligned}
$$

- first step is N parallel QP solves
- second step gives coordination, to solve large problem
- inequality constraint residual is $\mathbf{1}^{T}\left(F \bar{x}^{k}-g\right)_{+}$

Distributed QP

example with $n=100$ variables, $N=10$ subsystems

