Model Predictive Control

linear convex optimal control
finite horizon approximation
model predictive control

fast MPC implementations

supply chain management
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Linear time-invariant convex optimal control

minimize J =" l(z(t), u(t))

subject to wu(t) e, z(t)e X, t=0,1,...
x(t+1) = Ax(t) + Bu(t), t=0,1,...
z(0) = z.

e variables: state and input trajectories x(0), z(1),... € R",
u(0),u(1),... ¢ R™
e problem data:

— dynamics and input matrices A € R"*", B ¢ R"*™

— convex stage cost function /: R” x R™ — R, £(0,0) =0

— convex state and input constraint sets X', U, with 0 e X', 0 e U
— initial state z € X
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Greedy control

e use u(t) = argmin, {¢(z(t),w) | w e U, Azx(t) + Bw € X'}

e minimizes current stage cost only, ignoring effect of w(t) on future,
except for z(t +1) € X

e typically works very poorly; can lead to J = oo (when optimal u gives
finite J)
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‘Solution’ via dynamic programming

e (Bellman) value function V (z) is optimal value of control problem as a
function of initial state z

e can show V Is convex

e |/ satisfies Bellman or dynamic programming equation

V(z)=inf{l(z,w)+V(Az+ Bw) |w elU, Az+ Bw € X'}

e optimal u given by

u*(t) = argmin (l(x(t),w) + V(Ax(t) + Bw))
weld, Ax(t)+BweX
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e intepretation: term V (Axz(t) + Bw) properly accounts for future costs
due to current action w

e optimal input has ‘state feedback form’ u*(t) = ¢(x(t))
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Linear quadratic regulator

e special case of linear convex optimal control with

-U=R", X=R"
= L(z(t),u(t)) = 2(t)TQx(t) +u(t)'Ru(t), Q = 0, R = 0

e can be solved using DP

— value function is quadratic: V(z) = 2! Pz
— P can be found by solving an algebraic Riccati equation (ARE)

P=Q+ A"PA—-A"PB(R+ B'PB)"'B'PA

— optimal policy is linear state feedback: u*(t) = Kxz(t), with
K =—(R+BTPB)"'BTPA
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Finite horizon approximation

e use finite horizon T, impose terminal constraint z(7") = 0:

minimize T 0z (t), u(t))
subject to u

e apply the input sequence u(0),...,u(T —1),0,0,...
e a finite dimensional convex problem

e gives suboptimal input for original optimal control problem
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Example

e system with n = 3 states, m = 2 inputs; A, B chosen randomly
e quadratic stage cost: (v, w) = ||v||* + [Jw]||?

o X ={v||lv)l <1} U ={w ] [lw]lec < 0.5}

e initial point: z = (0.9,—0.9,0.9)

e optimal cost is V' (z) = 8.83
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Cost versus horizon
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Trajectories

20 30 40 50
05 ]
—~
X o
S
_O 5 L Il Il Il Il ] _O 5 i Il Il Il Il ]
0 10 20 30 40 50 0 10 20 30 40 50
t t

Prof. S. Boyd, EE364b, Stanford University 9



Model predictive control (MPC)

e at each time ¢ solve the (planning) problem

minimize Ziﬁfﬁ(m(ﬂ,u(ﬂ)
subject to ()E x()EX, T=t,...,t+T
(T + ) Ax(7)+ Bu(r), 7=t,...,t+T—1
z(t+T)=0
with variables z(t +1),...,z(t+T), u(t),...,u(t+T — 1)
and data z(t), A, B, ¢, X, U
e call solution Z(t+1),...,z2(t+T), u(t),...,u(t+T —1)
e we interpret these as plan of action for next T’ steps
o we take u(t) = u(t)

e this gives a complicated state feedback control u(t) = Pmpc(z(?))
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MPC performance versus horizon
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MPC trajectories

MPC, T' = 10 T = oo
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MPC

e goes by many other names, e.g., dynamic matrix control, receding
horizon control, dynamic linear programming, rolling horizon planning

e widely used in (some) industries, typically for systems with slow
dynamics (chemical process plants, supply chain)

e MPC typically works very well in practice, even with short T°

e under some conditions, can give performance guarantees for MPC
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Variations on MPC

e add final state cost V(z(t 4+ T')) instead of insisting on z(t + 1) = 0
—ifV =V, MPC gives optimal input

e convert hard constraints to violation penalties

— avoids problem of planning problem infeasibility

e solve MPC problem every K steps, K > 1

— use current plan for K steps; then re-plan
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Explicit MPC

e MPC with ¢ quadratic, X and U/ polyhedral

e can show ¢, is piecewise affine

Gmpe(?) = Kjz+ g5, 2 €R,

R1,...,Rn is polyhedral partition of X

(solution of any QP is PWA in righthand sides of constraints)
® Ompc (.., K, gj, Rj) can be computed explicitly, off-line

e on-line controller simply evaluates ¢p,pc(z(?))
(effort is dominated by determining which region x(t) lies in)
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e can work well for (very) small n, m, and T

e number of regions N grows exponentially in n, m, T’

— needs lots of storage
— evaluating ¢mpc can be slow

e simplification methods can be used to reduce the number of regions,
while still getting good control
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MPC problem structure

e MPC problem is highly structured (see Convex Optimization, §10.3.4)

— Hessian is block diagonal
— equality constraint matrix is block banded

e use block elimination to compute Newton step

— Schur complement is block tridiagonal with n x n blocks

e can solve in order T'(n +m)? flops using an interior point method
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Fast MPC

e can obtain further speedup by solving planning problem approximately

— fix barrier parameter; use warm-start
— (sharply) limit the total number of Newton steps

e results for simple C implementation

problem size QP size run time (ms)

n m T | vars constr | fast mpc SDPT3
4 2 10 50 160 0.3 150
10 3 30| 360 1080 4.0 1400
16 4 30| 570 1680 7.7 2600
30 8 30| 1110 3180 23.4 3400

e can run MPC at kilohertz rates
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Sup

ply chain management

e n nodes (warehouses/buffers)

e m unidirectional links

between nodes, external world

e x;(t) is amount of commodity at node ¢, in period ¢

e u;(t) is amount of commodity transported along link j

e incoming and outgoing node incidence matrices:

Y]

e dynamics: z(t+1) =
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yin(out) _ { 1 link j enters (exits) node ¢

0 otherwise

x(t) + APy (t) — A%y (t)
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Constraints and objective

e buffer limits: 0 < z;(t) < Tmax
(could allow z;(t) < 0, to represent back-order)

e link capacities: 0 < u;(t) < Umax
o A"y (t) < x(t) (can't ship out what's not on hand)

e shipping/transportation cost: S(u(t))
(can also include sales revenue or manufacturing cost)

e warehousing/storage cost: W(z(t))

e objective: > o (S(u(t)) + W(z(t)))
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Example

e n =5 nodes, m = 9 links (links 8, 9 are external links)
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Example

® Tiax = 1, Umax = 0.05

e storage cost: W(x(t)) = > 1 (xi(t) + x:(t)?)

1=

e shipping cost:

S(u(t)) = ua(t) + -+ ur(t) — (us(t) + uo(t))

transportation cost revenue

e initial stock: x(0) = (1,0,0,1,1)
e we run MPC with T = 5, final cost V(z(t +T)) = 10(17z(t + T))

e optimal cost: V(z) = 68.2; MPC cost 69.5
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MPC and optimal trajectories
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Variations on optimal control problem

e time varying costs, dynamics, constraints

— discounted cost
— convergence to nonzero desired state
— tracking time-varying desired trajectory

e coupled state and input constraints, e.g., (z(t),u(t)) € P
(as in supply chain management)

e slew rate constraints, e.g., [|[u(t + 1) — u(t)||co < AUmax

e stochastic control: future costs, dynamics, disturbances not known
(next lecture)
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