
Numerical Linear Algebra Software

(based on slides written by Michael Grant)

• BLAS, ATLAS

• LAPACK

• sparse matrices
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Numerical linear algebra in optimization

most memory usage and computation time in optimization methods is
spent on numerical linear algebra, e.g.,

• constructing sets of linear equations (e.g., Newton or KKT systems)

– matrix-matrix products, matrix-vector products, . . .

• and solving them

– factoring, forward and backward substitution, . . .

. . . so knowing about numerical linear algebra is a good thing
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Why not just use Matlab?

• Matlab (Octave, . . . ) is OK for prototyping an algorithm

• but you’ll need to use a real language (e.g., C, C++, Python) when

– your problem is very large, or has special structure
– speed is critical (e.g., real-time)
– your algorithm is embedded in a larger system or tool
– you want to avoid proprietary software

• in any case, the numerical linear algebra in Matlab is done using
standard free libraries

Prof. S. Boyd, EE364b, Stanford University 2



How to write numerical linear algebra software

DON’T!

whenever possible, rely on existing, mature software libraries

• you can focus on the higher-level algorithm

• your code will be more portable, less buggy, and will run
faster—sometimes much faster
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Netlib

the grandfather of all numerical linear algebra web sites

http://www.netlib.org

• maintained by University of Tennessee, Oak Ridge National Laboratory,
and colleagues worldwide

• most of the code is public domain or freely licensed

• much written in FORTRAN 77 (gasp!)
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Basic Linear Algebra Subroutines (BLAS)

written by people who had the foresight to understand the future benefits
of a standard suite of “kernel” routines for linear algebra.

created and organized in three levels:

• Level 1, 1973-1977: O(n) vector operations: addition, scaling, dot
products, norms

• Level 2, 1984-1986: O(n2) matrix-vector operations: matrix-vector
products, triangular matrix-vector solves, rank-1 and symmetric rank-2
updates

• Level 3, 1987-1990: O(n3) matrix-matrix operations: matrix-matrix
products, triangular matrix solves, low-rank updates
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BLAS operations

Level 1 addition/scaling αx, αx + y
dot products, norms xTy, ‖x‖2, ‖x‖1

Level 2 matrix/vector products αAx + βy, αATx + βy
rank 1 updates A + αxyT , A + αxxT

rank 2 updates A + αxyT + αyxT

triangular solves αT−1x, αT−Tx

Level 3 matrix/matrix products αAB + βC, αABT + βC
αATB + βC, αATBT + βC

rank-k updates αAAT + βC, αATA + βC
rank-2k updates αATB + αBTA + βC
triangular solves αT−1C, αT−TC
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Level 1 BLAS naming convention

BLAS routines have a Fortran-inspired naming convention:

cblas_ X XXXX

prefix data type operation

data types:

s single precision real d double precision real
c single precision complex z double precision complex

operations:

axpy y ← αx + y dot r ← xTy

nrm2 r ← ‖x‖2 =
√

xTx asum r ← ‖x‖1 =
∑

i |xi|
example:

cblas_ddot double precision real dot product
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BLAS naming convention: Level 2/3

cblas_ X XX XXX

prefix data type structure operation
matrix structure:

tr triangular tp packed triangular tb banded triangular
sy symmetric sp packed symmetric sb banded symmetric
hy Hermitian hp packed Hermitian hn banded Hermitian
ge general gb banded general

operations:
mv y ← αAx + βy sv x← A−1x (triangular only)
r A← A + xxT r2 A← A + xyT + yxT

mm C ← αAB + βC r2k C ← αABT + αBAT + βC

examples:
cblas_dtrmv double precision real triangular matrix-vector product
cblas_dsyr2k double precision real symmetric rank-2k update
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Using BLAS efficiently

always choose a higher-level BLAS routine over multiple calls to a
lower-level BLAS routine

A← A +
k

∑

i=1

xiy
T
i , A ∈ Rm×n, xi ∈ Rm, yi ∈ Rn

two choices: k separate calls to the Level 2 routine cblas_dger

A← A + x1y
T
1
, . . . A← A + xky

T
k

or a single call to the Level 3 routine cblas_dgemm

A← A + XY T , X = [x1 · · ·xk] , Y = [y1 · · · yk]

the Level 3 choice will perform much better
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Is BLAS necessary?

why use BLAS when writing your own routines is so easy?

A← A + XY T , A ∈ Rm×n, X ∈ Rm×p, Y ∈ Rn×p

Aij ← Aij +

p
∑

k=1

XikYjk

void matmultadd( int m, int n, int p, double* A,

const double* X, const double* Y ) {

int i, j, k;

for ( i = 0 ; i < m ; ++i )

for ( j = 0 ; j < n ; ++j )

for ( k = 0 ; k < p ; ++k )

A[ i + j * n ] += X[ i + k * p ] * Y[ j + k * p ];

}
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Is BLAS necessary?

• tuned/optimized BLAS will run faster than your home-brew version —
often 10× or more

• BLAS is tuned by selecting block sizes that fit well with your processor,
cache sizes

• ATLAS (automatically tuned linear algebra software)

http://math-atlas.sourceforge.net

uses automated code generation and testing methods to generate an
optimized BLAS library for a specific computer
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Improving performance through blocking

blocking is used to improve the performance of matrix/vector and
matrix/matrix multiplications, Cholesky factorizations, etc.

A + XY T ←
[

A11 A12

A21 A22

]

+

[

X11

X21

]

+
[

Y T
11

Y T
21

]

A11← A11 + X11Y
T
11

, A12← A12 + X11Y
T
21

,

A21← A21 + X21Y
T
11

, A22← A22 + X21Y
T
21

optimal block size, and order of computations, depends on details of
processor architecture, cache, memory
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Linear Algebra PACKage (LAPACK)

LAPACK contains subroutines for solving linear systems and performing
common matrix decompositions and factorizations

• first release: February 1992; latest version (3.0): May 2000

• supercedes predecessors EISPACK and LINPACK

• supports same data types (single/double precision, real/complex) and
matrix structure types (symmetric, banded, . . . ) as BLAS

• uses BLAS for internal computations

• routines divided into three categories: auxiliary routines, computational

routines, and driver routines
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LAPACK computational routines

computational routines perform single, specific tasks

• factorizations: LU , LLT/LLH, LDLT/LDLH, QR, LQ, QRZ,
generalized QR and RQ

• symmetric/Hermitian and nonsymmetric eigenvalue decompositions

• singular value decompositions

• generalized eigenvalue and singular value decompositions
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LAPACK driver routines
driver routines call a sequence of computational routines to solve standard
linear algebra problems, such as

• linear equations: AX = B

• linear least squares: minimizex ‖b−Ax‖2

• linear least-norm:
minimizey ‖y‖2
subject to d = By

• generalized linear least squares problems:

minimizex ‖c−Ax‖2
subject to Bx = d

minimizey ‖y‖2
subject to d = Ax + By
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LAPACK example

solve KKT system
[

H AT

A 0

] [

x
y

]

=

[

a
b

]

x ∈ Rn, v ∈ Rm, H = HT ≻ 0, m < n
option 1 : driver routine dsysv uses computational routine dsytrf to
compute permuted LDLT factorization

[

H A
A 0

]

→ PLDLTP T

and performs remaining computations to compute solution

[

x
y

]

= P TL−1D−1L−TP

[

a
b

]
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option 2 : block elimination

y = (AH−1AT )−1(AH−1a− b), x = H−1a−H−1ATy

• first we solve the system H[Z w] = [AT a] using driver routine dspsv

• then we construct and solve (AZ)y = Aw − b using dspsv again

• x = w − Zy

using this approach we could exploit structure in H, e.g., banded
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What about other languages?

BLAS and LAPACK routines can be called from C, C++, Java, Python,
. . .

an alternative is to use a “native” library, such as

• C++: Boost uBlas, Matrix Template Library

• Python: NumPy/SciPy, CVXOPT

• Java: JAMA
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Sparse matrices
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• A ∈ Rm×n is sparse if it has “enough zeros that it pays to take
advantage of them” (J. Wilkinson)

• usually this means nnz, number of elements known to be nonzero, is
small: nnz≪ mn
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Sparse matrices

sparse matrices can save memory and time

• storing A ∈ Rm×n using double precision numbers

– dense: 8mn bytes
– sparse: ≈ 16nnz bytes or less, depending on storage format

• operation y ← y + Ax:

– dense: mn flops
– sparse: nnz flops

• operation x← T−1x, T ∈ Rn×n triangular, nonsingular:

– dense: n2/2 flops
– sparse: nnz flops
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Representing sparse matrices

• several methods used

• simplest (but typically not used) is to store the data as list of (i, j, Aij)
triples

• column compressed format: an array of pairs (Aij, i), and an array of
pointers into this array that indicate the start of a new column

• for high end work, exotic data structures are used

• sadly, no universal standard (yet)
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Sparse BLAS?

sadly there is not (yet) a standard sparse matrix BLAS library

• the “official” sparse BLAS

http://www.netlib.org/blas/blast-forum

http://math.nist.gov/spblas

• C++: Boost uBlas, Matrix Template Library, SparseLib++

• Python: SciPy, PySparse, CVXOPT
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Sparse factorizations

libraries for factoring/solving systems with sparse matrices

• most comprehensive: SuiteSparse (Tim Davis)

http://www.cise.ufl.edu/research/sparse/SuiteSparse

• others include SuperLU, TAUCS, SPOOLES

• typically include

– A = PLLTP T Cholesky
– A = PLDLTP T for symmetric indefinite systems
– A = P1LUPT

2
for general (nonsymmetric) matrices

P , P1, P2 are permutations or orderings
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Sparse orderings

sparse orderings can have a dramatic effect on the sparsity of a
factorization
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• left: spy diagram of original NW arrow matrix

• center: spy diagram of Cholesky factor with no permutation (P = I)

• right: spy diagram of Cholesky factor with the best permutation
(permute 1→ n)
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Sparse orderings

• general problem of choosing the ordering that produces the sparsest
factorization is hard

• but, several simple heuristics are very effective

• more exotic ordering methods, e.g., nested disection, can work very well
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Symbolic factorization

• for Cholesky factorization, the ordering can be chosen based only on the
sparsity pattern of A, and not its numerical values

• factorization can be divided into two stages: symbolic factorization and
numerical factorization

– when solving multiple linear systems with identical sparsity patterns,
symbolic factorization can be computed just once

– more effort can go into selecting an ordering, since it will be
amortized across multiple numerical factorizations

• ordering for LDLT factorization usually has to be done on the fly, i.e.,
based on the data
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Other methods

we list some other areas in numerical linear algebra that have received
significant attention:

• iterative methods for sparse and structured linear systems

• parallel and distributed methods (MPI)

• fast linear operators: fast Fourier transforms (FFTs), convolutions,
state-space linear system simulations

there is considerable existing research, and accompanying public domain
(or freely licensed) code
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