Sums of Squares

Sanjay Lall
Stanford University

EE364b
April 19, 2011

polynomial programming

A familiar problem

$$
\begin{array}{rll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0 & \text { for all } i=1, \ldots, m \\
& h_{i}(x)=0 & \text { for all } i=1, \ldots, p
\end{array}
$$

in this section, objective, inequality and equality constraint functions are all polynomials

polynomial nonnegativity

$$
\text { does there exist } x \in \mathbb{R}^{n} \text { such that } f(x)<0
$$

- if not, f is called positive semidefinite or PSD

$$
f(x) \geq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

- the problem is NP-hard, but decidable

certificates

$$
\text { does there exist } x \in \mathbb{R}^{n} \text { such that } f(x)<0
$$

- answer yes is easy to verify; exhibit x such that $f(x)<0$
- answer no is hard; we need a certificate or a witness i.e, a proof that there is no feasible point

Sum of Squares Decomposition

f is nonnegative if there are polynomials g_{1}, \ldots, g_{s} such that

$$
f=\sum_{i=1}^{s} g_{i}^{2}
$$

a checkable certificate, called a sum-of-squares (SOS) decomposition

- how do we find the g_{i}
- when does such a certificate exist?

example

we can write any polynomial as a quadratic function of monomials

$$
\begin{aligned}
f & =4 x^{4}+4 x^{3} y-7 x^{2} y^{2}-2 x y^{3}+10 y^{4} \\
& =\left[\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
4 & 2 & -\lambda \\
2 & -7+2 \lambda & -1 \\
-\lambda & -1 & 10
\end{array}\right]\left[\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =z^{T} Q(\lambda) z
\end{aligned}
$$

- above equation holds for all $\lambda \in \mathbb{R}$
- if for some λ we have $Q(\lambda) \succeq 0$, then we can factorize $Q(\lambda)$

example, continued

e.g., with $\lambda=6$, we have

$$
Q(\lambda)=\left[\begin{array}{rrr}
4 & 2 & -6 \\
2 & 5 & -1 \\
-6 & -1 & 10
\end{array}\right]=\left[\begin{array}{rr}
0 & 2 \\
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{rrr}
0 & 2 & 1 \\
2 & 1 & -3
\end{array}\right]
$$

so we have an SOS decomposition

$$
\begin{aligned}
f & =\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & 2 \\
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =\left\|\left[\begin{array}{c}
2 x y+y^{2} \\
2 x^{2}+x y-3 y^{2}
\end{array}\right]\right\|^{2} \\
& =\left(2 x y+y^{2}\right)^{2}+\left(2 x^{2}+x y-3 y^{2}\right)^{2}
\end{aligned}
$$

sum of squares and semidefinite programming

suppose $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, of degree $2 d$
let z be a vector of all monomials of degree less than or equal to d
f is SOS if and only if there exists Q such that

$$
\begin{aligned}
Q & \succeq 0 \\
f & =z^{T} Q z
\end{aligned}
$$

- this is an SDP in standard primal form
- the number of components of z is $\binom{n+d}{d}$
- comparing terms gives affine constraints on the elements of Q

sum of squares and semidefinite programming

if Q is a feasible point of the SDP, then to construct the SOS representation
factorize $Q=V V^{T}$, and write $V=\left[v_{1} \ldots v_{r}\right]$, so that

$$
\begin{aligned}
f & =z^{T} V V^{T} z \\
& =\left\|V^{T} z\right\|^{2} \\
& =\sum_{i=1}^{r}\left(v_{i}^{T} z\right)^{2}
\end{aligned}
$$

- one can factorize using e.g., Cholesky or eigenvalue decomposition
- the number of squares r equals the rank of Q

example

$$
\begin{aligned}
f & =2 x^{4}+2 x^{3} y-x^{2} y^{2}+5 y^{4} \\
& =\left[\begin{array}{l}
x^{2} \\
x y \\
y^{2}
\end{array}\right]^{T}\left[\begin{array}{lll}
q_{11} & q_{12} & q_{13} \\
q_{12} & q_{22} & q_{23} \\
q_{13} & q_{23} & q_{33}
\end{array}\right]\left[\begin{array}{c}
x^{2} \\
x y \\
y^{2}
\end{array}\right] \\
& =q_{11} x^{4}+2 q_{12} x^{3} y+\left(q_{22}+2 q_{13}\right) x^{2} y^{2}+2 q_{23} x y^{3}+q_{33} y^{4}
\end{aligned}
$$

so f is SOS if and only if there exists Q satisfying the SDP

$$
\begin{array}{rlrl}
Q \succeq 0 & q_{11} & =2 & \\
2 q_{12}=2 \\
2 q_{12}+q_{22} & =-1 & & 2 q_{23}=0 \\
q_{33} & =5 & &
\end{array}
$$

convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

$$
f, g \mathrm{PSD} \quad \Longrightarrow \quad \lambda f+\mu g \text { is PSD for all } \lambda, \mu \geq 0
$$

let $P_{n, d}$ be the set of PSD polynomials of degree $\leq d$ let $\Sigma_{n, d}$ be the set of SOS polynomials of degree $\leq d$

- both $P_{n, d}$ and $\Sigma_{n, d}$ are convex cones in \mathbb{R}^{N} where $N=\binom{n+d}{d}$
- we know $\Sigma_{n, d} \subset P_{n, d}$, and testing if $f \in P_{n, d}$ is NP-hard
- but testing if $f \in \Sigma_{n, d}$ is an SDP (but a large one)

polynomials in one variable

if $f \in \mathbb{R}[x]$, then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

$$
\begin{aligned}
f & =x^{6}-10 x^{5}+51 x^{4}-166 x^{3}+342 x^{2}-400 x+200 \\
& =(x-2)^{2}(x-(2+i))(x-(2-i))(x-(1+3 i))(x-(1-3 i))
\end{aligned}
$$

now reorder complex conjugate roots

$$
\begin{aligned}
& =(x-2)^{2}(x-(2+i))(x-(1+3 i))(x-(2-i))(x-(1-3 i)) \\
& =(x-2)^{2}\left(\left(x^{2}-3 x-1\right)-i(4 x-7)\right)\left(\left(x^{2}-3 x-1\right)+i(4 x-7)\right) \\
& =(x-2)^{2}\left(\left(x^{2}-3 x-1\right)^{2}+(4 x-7)^{2}\right)
\end{aligned}
$$

so every PSD scalar polynomial is the sum of one or two squares

quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS
because it is PSD if and only if

$$
f=x^{T} Q x
$$

where $Q \geq 0$
and it is SOS if and only if

$$
\begin{aligned}
f & =\sum_{i}\left(v_{i}^{T} x\right)^{2} \\
& =x^{T}\left(\sum_{i} v_{i} v_{i}^{T}\right) x
\end{aligned}
$$

some background

In 1888, Hilbert showed that $\mathrm{PSD}=\mathrm{SOS}$ if and only if

- $d=2$, i.e., quadratic polynomials
- $n=1$, i.e., univariate polynomials
- $d=4, n=2$, i.e., quartic polynomials in two variables

$n \backslash d$	2	4	6	8
1	yes yes yes yes			
2	yes yes no	no		
3	yes no	no	no	
4	yes no no no			

- in general f is PSD does not imply f is SOS

some background

- Connections with Hilbert's 17th problem, solved by Artin: every PSD polynomial is a SOS of rational functions.
- If f is not SOS , then can try with $g f$, for some g.
- For fixed f, can optimize over g too
- Otherwise, can use a "universal" construction of Pólya-Reznick.

More about this later.

The Motzkin Polynomial

A positive semidefinite polynomial, that is not a sum of squares.
$M(x, y)=x^{2} y^{4}+x^{4} y^{2}+1-3 x^{2} y^{2}$

- Nonnegativity follows from the arithmetic-geometric inequality applied to $\left(x^{2} y^{4}, x^{4} y^{2}, 1\right)$
- Introduce a nonnegative factor $x^{2}+y^{2}+1$
- Solving the SDPs we obtain the decomposition:

$$
\begin{aligned}
\left(x^{2}+y^{2}+1\right) M(x, y)= & \left(x^{2} y-y\right)^{2}+\left(x y^{2}-x\right)^{2}+\left(x^{2} y^{2}-1\right)^{2}+ \\
& +\frac{1}{4}\left(x y^{3}-x^{3} y\right)^{2}+\frac{3}{4}\left(x y^{3}+x^{3} y-2 x y\right)^{2}
\end{aligned}
$$

The Univariate Case:

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{2 d} x^{2 d} \\
& =\left[\begin{array}{c}
1 \\
x \\
\vdots \\
x^{d}
\end{array}\right]^{T}\left[\begin{array}{cccc}
q_{00} & q_{01} & \cdots & q_{0 d} \\
q_{01} & q_{11} & \cdots & q_{1 d} \\
\vdots & \vdots & \ddots & \vdots \\
q_{0 d} & q_{1 d} & \cdots & q_{d d}
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
\vdots \\
x^{d}
\end{array}\right] \\
& =\sum_{i=0}^{d}\left(\sum_{j+k=i} q_{j k}\right) x^{i}
\end{aligned}
$$

- In the univariate case, the SOS condition is exactly equivalent to nonnegativity.
- The matrices A_{i} in the SDP have a Hankel structure. This can be exploited for efficient computation.

About SOS/SDP

- The resulting SDP problem is polynomially sized (in n, for fixed d).
- By properly choosing the monomials, we can exploit structure (sparsity, symmetries, ideal structure).
- An important feature: the problem is still a SDP if the coefficients of F are variable, and the dependence is affine.
- Can optimize over SOS polynomials in affinely described families.

For instance, if we have $p(x)=p_{0}(x)+\alpha p_{1}(x)+\beta p_{2}(x)$, we can "easily" find values of α, β for which $p(x)$ is SOS.

Global Optimization

Consider the problem

$$
\min _{x, y} f(x, y)
$$

with

$$
f(x, y):=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x y-4 y^{2}+4 y^{4}
$$

- Not convex. Many local minima. NP-hard.
- Find the largest γ s.t. $f(x, y)-\gamma$ is SOS
- Essentially due to Shor (1987).
- A semidefinite program (convex!).
- If exact, can recover optimal solution.
- Surprisingly effective.

Solving, the maximum γ is -1.0316 . Exact value.

Lyapunov Example

A jet engine model

$$
\begin{aligned}
\dot{x} & =-y-\frac{3}{2} x^{2}-\frac{1}{2} x^{3} \\
\dot{y} & =3 x-y
\end{aligned}
$$

Try a generic 4th order polynomial Lyapunov function.

$$
V(x, y)=\sum_{0 \leq j+k \leq 4} c_{j k} x^{j} y^{k}
$$

Find a $V(x, y)$ that satisfies the conditions:

- $V(x, y)$ is SOS.
- $-\dot{V}(x, y)$ is SOS .

Both conditions are affine in the $c_{j k}$. Can do this directly using SOS/SDP!

Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

$V=4.5819 x^{2}-1.5786 x y+1.7834 y^{2}-0.12739 x^{3}+2.5189 x^{2} y-0.34069 x y^{2}$
$+0.61188 y^{3}+0.47537 x^{4}-0.052424 x^{3} y+0.44289 x^{2} y^{2}+0.0000018868 x y^{3}+0.090723 y^{4}$

Extensions

- Other linear differential inequalities (e.g. Hamilton-Jacobi).
- Many possible variations: nonlinear optimal control, parameter dependent Lyapunov functions, etc.
- Can also do local results (for instance, on compact domains).
- Polynomial and rational vector fields, or functions with an underlying algebraic structure.
- Natural extension of the SDPs for the linear case.

Automated Inference and Algebra

Automated inference is a well-known approach for formal proof systems.

Suppose $f_{1}(x) \geq 0$ and $f_{2}(x) \geq 0$, then $h(x) \geq 0$
if any of the following hold:
(i) $h(x)=f_{1}(x)+f_{2}(x)$
(ii) $h(x)=f_{1}(x) f_{2}(x)$
(iii) For any f, the function $h(x)=f(x)^{2}$

- We can use algebra to generate such valid inequalities
- Closure under these inference rules gives the cone of polynomials generated by the f_{i}, written cone $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$

The Sum-of-Squares Cone

A polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a sum-of-squares (SOS) if

$$
f(x)=\sum_{i=1}^{r} s_{i}(x)^{2}
$$

for some polynomials s_{1}, \ldots, s_{r} and some $r \geq 0$

- Denote by Σ the set of SOS polynomials
- Σ is the smallest cone.
- This cone can be computationally characterized using semidefinite programming.
- The SOS decomposition is a simple certificate of nonnegativity of f.

The Cone

We can explicitly parameterize the cone generated by the f_{i}.

For example, $h \in \operatorname{cone}\left\{f_{1}, f_{2}, f_{3}\right\}$ if and only if

$$
h=s_{1} g_{1}+\cdots+s_{r} g_{r}
$$

where

$$
s_{i} \in \Sigma \quad \text { and } \quad g_{i} \in\left\{1, f_{1}, f_{2}, f_{3}, f_{1} f_{2}, f_{2} f_{3}, f_{3} f_{1}, f_{1} f_{2} f_{3}\right\}
$$

In general, every h is a linear combination of squarefree products of the f_{i}, with SOS coefficients

An Algebraic Dual Problem

Suppose f_{1}, \ldots, f_{m} are polynomials. The primal feasibility problem is

$$
\begin{aligned}
& \text { does there exist } x \in \mathbb{R}^{n} \text { such that } \\
& f_{i}(x) \geq 0 \quad \text { for all } i=1, \ldots, m
\end{aligned}
$$

The dual feasibility problem is

$$
\text { Is it true that }-1 \in \operatorname{cone}\left\{f_{1}, \ldots, f_{m}\right\}
$$

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz (Stengle 1974) implies the converse; i.e., this is a strong duality result.

Example

Consider the feasibility problem

$S=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y) \geq 0, g(x, y) \geq 0\right\}$ where

$$
f=x-y^{2}+3 \quad g=-y-x^{2}-2
$$

By the P -satz, the primal is infeasible if and only if there exist polynomials $s_{0}, s_{1}, s_{2}, s_{3} \in \Sigma$ such that

$$
-1=s_{0}+s_{1} f+s_{2} g+s_{3} f g
$$

A certificate is given by

$$
s_{0}=\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}, \quad s_{1}=2, \quad s_{2}=6, \quad s_{3}=0
$$

Suppose we have SOS polynomials s_{0}, \ldots, s_{3} such that

$$
-1=s_{0}+s_{1} f_{1}+s_{2} f_{2}+s_{3} f_{1} f_{2}
$$

Then this is a certificate that there is no $x \in \mathbb{R}^{n}$ such that

$$
f_{1}(x) \geq 0 \quad \text { and } \quad f_{2}(x) \geq 0
$$

Positivstellensatz

The polynomials s_{i} give a certificate of infeasibility of the primal problem.
Given them, one may immediately computationally verify that

$$
-1=s_{1} g_{1}+\cdots+s_{r} g_{r}
$$

and this is a proof of infeasibility

Finding Refutations

- Geometrically, cone $\left\{f_{1}, \ldots, f_{m}\right\}$ is a convex cone, so testing if it contains -1 is a convex program.
- There is a correspondence between the geometric object (the feasible set) and the algebraic object (the cone).

