
Subgradient Methods

Stephen Boyd (with help from Jaehyun Park)
Notes for EE364b, Stanford University, Spring 2013–14

May 2014; based on notes from January 2007

Contents

1 Introduction 3

2 Basic subgradient method 4

2.1 Negative subgradient update . 4
2.2 Step size rules . 4
2.3 Convergence results . 5

3 Convergence proof 6

3.1 Assumptions . 6
3.2 Some basic inequalities . 6
3.3 A bound on the suboptimality bound . 8
3.4 A stopping criterion . 9
3.5 Numerical example . 9

4 Polyak’s step length 12

4.1 Optimal step size choice when f ⋆ is known 12
4.2 Polyak step size choice with estimated f ⋆ . 12
4.3 Numerical example . 13

5 Alternating projections 16

5.1 Finding a point in the intersection of convex sets 16
5.2 Solving convex inequalities . 17
5.3 Positive semidefinite matrix completion . 18

6 Projected subgradient method 21

6.1 Numerical example . 22
6.2 Projected subgradient for dual problem . 23
6.3 Numerical example . 24

1

7 Subgradient method for constrained optimization 26

7.1 Numerical example . 28

8 Primal-dual subgradient method 30

8.1 Equality constrained problems . 30
8.2 Inequality constrained problems . 33
8.3 Numerical example . 35

9 Speeding up subgradient methods 37

9.1 Heavy ball methods . 37

2

1 Introduction

The subgradient method is a very simple algorithm for minimizing a nondifferentiable convex
function. The method looks very much like the ordinary gradient method for differentiable
functions, but with several notable exceptions:

• The subgradient method applies directly to nondifferentiable f .

• The step lengths are not chosen via a line search, as in the ordinary gradient method.
In the most common cases, the step lengths are fixed ahead of time.

• Unlike the ordinary gradient method, the subgradient method is not a descent method;
the function value can (and often does) increase.

The subgradient method is readily extended to handle problems with constraints.
Subgradient methods can be much slower than interior-point methods (or Newton’s

method in the unconstrained case). In particular, they are first-order methods; their perfor-
mance depends very much on the problem scaling and conditioning. (In contrast, Newton
and interior-point methods are second-order methods, not affected by problem scaling.)

However, subgradient methods do have some advantages over interior-point and New-
ton methods. They can be immediately applied to a far wider variety of problems than
interior-point or Newton methods. The memory requirement of subgradient methods can
be much smaller than an interior-point or Newton method, which means it can be used for
extremely large problems for which interior-point or Newton methods cannot be used. Mor-
ever, by combining the subgradient method with primal or dual decomposition techniques, it
is sometimes possible to develop a simple distributed algorithm for a problem. In any case,
subgradient methods are well worth knowing about.

The subgradient method was originally developed by Shor and others in the Soviet Union
in the 1960s and 1970s. A basic reference on subgradient methods is his book [Sho85]; a
very clear discussion can be found in chapter 5 of Polyak’s book [Pol87]. Bertsekas [Ber99]
is another good reference on the subgradient method, in particular, on how to combine it
with primal and dual decomposition. Other book treatments of the topic are in Ruszczyn-
ski [Rus06, §7.1], Nesterov [Nes04, Chap. 3], Akgul [Akg84], Yudin and Nemirovski [NY83],
Censor and Zenios [CZ97], and Shor [Sho98, Chap. 2]. Some interesting recent research
papers on subgradient methods are [NB01] and [Nes09].

3

2 Basic subgradient method

2.1 Negative subgradient update

We start with the unconstrained case, where the goal is to minimize f : Rn → R, which is
convex and has domain Rn (for now). To do this, the subgradient method uses the simple
iteration

x(k+1) = x(k) − αkg
(k).

Here x(k) is the kth iterate, g(k) is any subgradient of f at x(k), and αk > 0 is the kth step
size. Thus, at each iteration of the subgradient method, we take a step in the direction of a
negative subgradient.

Recall that a subgradient of f at x is any vector g that satisfies the inequality f(y) ≥
f(x) + gT (y − x) for all y. When f is differentiable, the only possible choice for g(k) is
∇f(x(k)), and the subgradient method then reduces to the gradient method (except, as we’ll
see below, for the choice of step size). The set of subgradients of f at x is the subdifferential
of f at x, denoted ∂f(x). So the condition that g(k) be a subgradient of f at x(k) can be
written g(k) ∈ ∂f(x(k)).

It can happen that −g(k) is not a descent direction for f at x(k), i.e., f ′(x;−g(k)) > 0.
In such cases we always have f(x(k+1)) > f(x(k)). Even when −g(k) is a descent direction
at x(k), the step size can be such f(x(k+1)) > f(x(k)). In other words, an iteration of the
subgradient method can increase the objective function.

Since the subgradient method is not a descent method, it is common to keep track of the
best point found so far, i.e., the one with smallest function value. At each step, we set

f
(k)
best = min{f (k−1)

best , f(x(k))},

and set i
(k)
best = k if f(x(k)) = f

(k)
best, i.e., if x

(k) is the best point found so far. (In a descent
method there is no need to do this, since the current point is always the best one so far.)
Then we have

f
(k)
best = min{f(x(1)), . . . , f(x(k))},

i.e., the best objective value found in k iterations. Since f
(k)
best is decreasing, it has a limit

(which can be −∞).

2.2 Step size rules

In the subgradient method the step size selection is very different from the standard gradient
method. Many different types of step size rules are used. We’ll start with five basic step size
rules.

• Constant step size. αk = α is a positive constant, independent of k.

• Constant step length. αk = γ/‖g(k)‖2, where γ > 0. This means that ‖x(k+1)−x(k)‖2 =
γ.

4

• Square summable but not summable. The step sizes satisfy

αk ≥ 0,
∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞.

One typical example is αk = a/(b+ k), where a > 0 and b ≥ 0.

• Nonsummable diminishing. The step sizes satisfy

αk ≥ 0, lim
k→∞

αk = 0,
∞
∑

k=1

αk = ∞.

Step sizes that satisfy this condition are called diminishing step size rules. A typical
example is αk = a/

√
k, where a > 0.

• Nonsummable diminishing step lengths. The step sizes are chosen as αk = γk/‖g(k)‖2,
where

γk ≥ 0, lim
k→∞

γk = 0,
∞
∑

k=1

γk = ∞.

There are still other choices, and many variations on these choices. In §4.1 we will
encounter another step size rule that requires knowledge of the optimal value f ⋆.

The most interesting feature of these choices is that they are determined before the al-

gorithm is run; they do not depend on any data computed during the algorithm. This is
very different from the step size rules found in standard descent methods, which very much
depend on the current point and search direction.

2.3 Convergence results

There are many results on convergence of the subgradient method. For constant step size
and constant step length, the subgradient algorithm is guaranteed to converge to within
some range of the optimal value, i.e., we have

lim
k→∞

f
(k)
best − f ⋆ < ǫ,

where f ⋆ denotes the optimal value of the problem, i.e., f ⋆ = infx f(x). (This implies that
the subgradient method finds an ǫ-suboptimal point within a finite number of steps.) The
number ǫ is a function of the step size parameter h, and decreases with it.

For the diminishing step size and step length rules (and therefore also the square summable
but not summable step size rule), the algorithm is guaranteed to converge to the optimal
value, i.e., we have limk→∞ f(x(k)) = f ⋆. It’s remarkable that such a simple algorithm can
be used to minimize any convex function for which you can compute a subgradient at each
point. We’ll also see that the convergence proof is also simple.

When the function f is differentiable, we can say a bit more about the convergence. In
this case, the subgradient method with constant step size yields convergence to the optimal
value, provided the parameter α is small enough.

5

3 Convergence proof

3.1 Assumptions

Here we give a proof of some typical convergence results for the subgradient method. We
assume that there is a minimizer of f , say x⋆. We also make one other assumption on f :
We will assume that the norm of the subgradients is bounded, i.e., there is a G such that
‖g(k)‖2 ≤ G for all k. This will be the case if, for example, f satisfies the Lipschitz condition

|f(u)− f(v)| ≤ G‖u− v‖2,

for all u, v, because then ‖g‖2 ≤ G for any g ∈ ∂f(x), and any x. In fact, some versions
of the subgradient method (e.g., diminishing nonsummable step lengths) work when this
assumption doesn’t hold; see [Sho85] or [Pol87].

We’ll also assume that a number R is known that satisfies R ≥ ‖x(1) − x⋆‖2. We can
interpret R as an upper bound on dist(x(1), X⋆), the distance of the initial point to the
optimal set.

3.2 Some basic inequalities

For the standard gradient descent method, the convergence proof is based on the function
value decreasing at each step. In the subgradient method, the key quantity is not the function
value (which often increases); it is the Euclidean distance to the optimal set.

Recall that x⋆ is a point that minimizes f , i.e., it is an arbitrary optimal point. We have

‖x(k+1) − x⋆‖22 = ‖x(k) − αkg
(k) − x⋆‖22

= ‖x(k) − x⋆‖22 − 2αkg
(k)T (x(k) − x⋆) + α2

k‖g(k)‖22
≤ ‖x(k) − x⋆‖22 − 2αk(f(x

(k))− f ⋆) + α2
k‖g(k)‖22,

where f ⋆ = f(x⋆). The last line follows from the definition of subgradient, which gives

f(x⋆) ≥ f(x(k)) + g(k)T (x⋆ − x(k)).

Applying the inequality above recursively, we have

‖x(k+1) − x⋆‖22 ≤ ‖x(1) − x⋆‖22 − 2
k
∑

i=1

αi(f(x
(i))− f ⋆) +

k
∑

i=1

α2
i ‖g(i)‖22.

Using ‖x(k+1) − x⋆‖22 ≥ 0 and ‖x(1) − x⋆‖2 ≤ R we have

2
k
∑

i=1

αi(f(x
(i))− f ⋆) ≤ R2 +

k
∑

i=1

α2
i ‖g(i)‖22. (1)

Combining this with

k
∑

i=1

αi(f(x
(i))− f ⋆) ≥

(

k
∑

i=1

αi

)

min
i=1,...,k

(f(x(i))− f ⋆) =

(

k
∑

i=1

αi

)

(f
(k)
best − f ⋆),

6

we have the inequality

f
(k)
best − f ⋆ = min

i=1,...,k
f(x(i))− f ⋆ ≤ R2 +

∑k
i=1 α

2
i ‖g(i)‖22

2
∑k

i=1 αi

. (2)

Finally, using the assumption ‖g(k)‖2 ≤ G, we obtain the basic inequality

f
(k)
best − f ⋆ ≤ R2 +G2∑k

i=1 α
2
i

2
∑k

i=1 αi

. (3)

From this inequality we can read off various convergence results.

Constant step size. When αk = α, we have

f
(k)
best − f ⋆ ≤ R2 +G2α2k

2αk
.

The righthand side converges to G2α/2 as k → ∞. Thus, for the subgradient method with

fixed step size α, f
(k)
best converges to within G2α/2 of optimal. We also find that f(x(k))−f ⋆ ≤

G2α within at most R2/(G2α2) steps.

Constant step length. With αk = γ/‖g(k)‖2, the inequality (2) becomes

f
(k)
best − f ⋆ ≤ R2 + γ2k

2
∑k

i=1 αi

≤ R2 + γ2k

2γk/G
,

using αi ≥ γ/G. The righthand side converges to Gγ/2 as k → ∞, so in this case the
subgradient method converges to within Gγ/2 of optimal.

Square summable but not summable. Now suppose

‖α‖22 =
∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞.

Then we have

f
(k)
best − f ⋆ ≤ R2 +G2‖α‖22

2
∑k

i=1 αi

,

which converges to zero as k → ∞, since the numerator converges to R2 +G2‖α‖22, and the
denominator grows without bound. Thus, the subgradient method converges (in the sense

f
(k)
best → f ⋆).

7

Diminishing step size rule. If the sequence αk converges to zero and is nonsummable,
then the righthand side of the inequality (3) converges to zero, which implies the subgradient
method converges. To show this, let ǫ > 0. Then there exists an integer N1 such that
αi ≤ ǫ/G2 for all i > N1. There also exists an integer N2 such that

N2
∑

i=1

αi ≥
1

ǫ



R2 +G2
N1
∑

i=1

α2
i



 ,

since
∑

∞

i=1 αi = ∞. Let N = max{N1, N2}. Then for k > N , we have

R2 +G2∑k
i=1 α

2
i

2
∑k

i=1 αi

≤ R2 +G2∑N1

i=1 α
2
i

2
∑k

i=1 αi

+
G2∑k

i=N1+1 α
2
i

2
∑N1

i=1 αi + 2
∑k

i=N1+1 αi

≤ R2 +G2∑N1

i=1 α
2
i

(2/ǫ)
(

R2 +G2
∑N1

i=1 α
2
i

) +
G2∑k

i=N1+1(ǫαi/G
2)

2
∑k

i=N1+1 αi

=
ǫ

2
+

ǫ

2
= ǫ.

Nonsummable diminishing step lengths. Finally, suppose that αk = γk/‖g(k)‖2, with
γk nonsummable and converging to zero. The inequality (2) becomes

f
(k)
best − f ⋆ ≤ R2 +

∑k
i=1 γ

2
k

2
∑k

i=1 αi

≤ R2 +
∑k

i=1 γ
2
k

(2/G)
∑k

i=1 γi
,

which converges to zero as k → 0.

3.3 A bound on the suboptimality bound

It’s interesting to ask the question, what sequence of step sizes minimizes the righthand side
of (3)? In other words, how do we choose positive α1, . . . , αk so that

R2 +G2∑k
i=1 α

2
i

2
∑k

i=1 αi

(which is an upper bound on f
(k)
best − f ⋆) is minimized? This is a convex and symmetric

function of α1, . . . , αk, so we conclude the optimal occurs when all αi are equal (to, say, α).
This reduces our suboptimality bound to

R2 +G2kα2

2kα

which is minimized by α = (R/G)/
√
k.

In other words, the choice of α1, . . . , αk that minimizes the suboptimality bound (3) is
given by

αi = (R/G)/
√
k, i = 1, . . . , k.

8

This choice of constant step size yields the suboptimality bound

f
(k)
best − f ⋆ ≤ RG/

√
k.

Put another way, we can say that for any choice of step sizes, the suboptimality bound (3)
must be at least as large as RG/

√
k. If we use (3) as our stopping criterion, then the number

of steps to achieve a guaranteed accuracy of ǫ will be at least (RG/ǫ)2, no matter what step
sizes we use. (It will be this number if we use the step size αk = (R/G)/

√
k).

Note that RG has a simple interpretation as an initial bound on f(x(1)) − f ⋆, based on
‖x(1) − x⋆‖2 ≤ R and the Lipschitz constant G for f . Thus (RG)/ǫ is the ratio of initial
uncertainty in f ⋆ to final uncertainty in f ⋆. If we square this number, we get the minimum
number of steps it will take to achieve this reduction in uncertainty. This tells us that the
subgradient method is going to be very slow, if we use (3) as our stopping criterion. To
reduce the initial uncertainty by a factor of 1000, say, it will require at least 106 iterations.

3.4 A stopping criterion

We can use (1) to find a lower bound on f ⋆ that is sharper than the lower bounds (2) and (3),
and can be used as a stopping criterion. Re-arranging (1) and using R ≥ ‖x(1) − x⋆‖2. we
get

f ⋆ ≥ lk =
2
∑k

i=1 αif(x
(i))−R2 −∑k

i=1 α
2
i ‖g(i)‖22

2
∑k

i=1 αi

, (4)

which can be computed after the kth step. The sequence l1, l2, . . . need not increase, so we
can keep track of the best lower bound on f ⋆ found so far,

l
(k)
best = max{l1, . . . , lk}.

We can terminate the algorithm when f
(k)
best − l

(k)
best is smaller than some threshold.

This bound is better than (3), and doesn’t depend on G, but it too goes to zero very
slowly. For this reason, the subgradient method is usually used without any formal stopping
criterion.

3.5 Numerical example

We consider the problem of minimizing a piecewise linear function:

minimize f(x) = maxi=1,...,m(a
T
i x+ bi),

with variable x ∈ Rn. Of course this problem is readily (and efficiently) solved via linear
programming.

Finding a subgradient of f is easy: given x, we first find an index j for which

aTj x+ bj = max
i=1,...,m

(aTi x+ bi).

9

500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

k

f
(k
)

b
es
t
−
f
⋆

γ = 0.05
γ = 0.01
γ = 0.005

Figure 1: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with constant step length γ.

Then we can take as subgradient g = aj. We can take G = maxi=1,...,m ‖ai‖2.
We illustrate the subgradient method with a specific problem instance with n = 20

variables and m = 100 terms, with problem data ai and bi generated from a unit normal
distribution. We start with x(1) = 0. There is no simple way to find a justifiable value for R
(i.e., a value of R for which we can prove that ‖x(1)−x⋆‖2 ≤ R holds) so we take R = 10. For
our particular problem instance, it turns out that ‖x(1) − x⋆‖2 = 0.91, where we computed
an optimal point and the optimal value f ⋆ ≈ 1.1 using linear programming.

We first consider the constant step length rule αk = γ/‖g(k)‖2. Figure 1 shows conver-

gence of f
(k)
best − f ⋆ for γ = 0.05, γ = 0.01, and γ = 0.005. The figure reveals a trade-off:

larger γ gives faster convergence, but larger final suboptimality.
To illustrate the subgradient method with some diminishing step size rules, we consider

the nonsummable diminishing step size rule αk = 0.1/
√
k, and the square summable but not

summable step rule αk = 1/k. The convergence for these step size rules is plotted in figure 2.
These plots are fairly typical: The subgradient method is very slow. But what do you

expect from an algorithm that is just a few lines of code, has no line search, and uses any
subgradient? (And has a convergence proof that is also just a few lines long.) One of its
advantages, apart from simplicity, is robustness. We’ll see this very clearly when we study
the stochastic subgradient method.

10

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

k

f
(k
)

b
es
t
−
f
⋆

αk = 0.1/
√
k

αk = 1/
√
k

αk = 1/k
αk = 10/k

Figure 2: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with two diminishing step rules αk = 0.1/
√
k and αk = 1/

√
k, and with two

square summable step size rules αk = 1/k and αk = 10/k.

11

4 Polyak’s step length

In this section we describe a subgradient step length choice due to Polyak.

4.1 Optimal step size choice when f ⋆ is known

Polyak [Pol87] suggests a step size that can be used when the optimal value f ⋆ is known,
and is in some sense optimal. (You might imagine that f ⋆ is rarely known, but we will see
that’s not the case.) The step size is

αk =
f(x(k))− f ⋆

‖g(k)‖22
. (5)

To motivate this step size, imagine that

f(x(k) − αg(k)) ≈ f(x(k)) + g(k)T
(

x(k) − αg(k) − x(k)
)

= f(x(k))− αg(k)T g(k).

(This would be the case if α were small, and g(k) = ∇f(x(k)).) Replacing the lefthand side
with f ⋆ and solving for α gives the step length above.

We can give another simple motivation for the step length (5). The subgradient method
starts from the basic inequality

‖x(k+1) − x⋆‖22 ≤ ‖x(k) − x⋆‖22 − 2αk(f(x
(k))− f ⋆) + α2

k‖g(k)‖22.

The step size (5) minimizes the righthand side.
To analyze convergence, we substitute the step size (5) into (1), to get

2
k
∑

i=1

(f(x(i))− f ⋆)2

‖g(i)‖22
≤ R2 +

k
∑

i=1

(f(x(i))− f ⋆)2

‖g(i)‖22
,

so
k
∑

i=1

(f(x(i))− f ⋆)2

‖g(i)‖22
≤ R2.

Using ‖g(i)‖2 ≤ G we get
k
∑

i=1

(f(x(i))− f ⋆)2 ≤ R2G2.

We conclude that f(x(k)) → f ⋆. The number of steps needed before we can guarantee
suboptimality ǫ is k = (RG/ǫ)2, which is optimal from our analysis above.

4.2 Polyak step size choice with estimated f ⋆

The basic idea is to estimate the optimal value f ⋆, as fbest − γk, where γk > 0 and γk → 0.
This suggests the step size

αk =
f(x(k))− f

(k)
best + γk

‖g(k)‖22
.

12

We’ll also need
∑

∞

k=1 γk = ∞. Note that γk has a simple interpretation: It’s our estimate of

how suboptimal the current point is. Then we have f
(k)
best → f ⋆.

To show this, we substitute αi into the basic inequality (1) to get

R2 ≥
k
∑

i=1

(

2αi(f(x
(i))− f ∗)− α2

i ‖g(i)‖22
)

=
k
∑

i=1

2(f(x(i))− f
(i)
best + γi)(f(x

(i))− f ∗)− (f(x(i))− f
(i)
best + γi)

2

‖g(i)‖22

=
k
∑

i=1

(f(x(i))− f
(i)
best + γi)((f(x

(i))− f ∗) + (f
(i)
best − f ∗)− γi)

‖g(i)‖22
.

Now we can prove convergence. Suppose f
(k)
best − f ⋆ ≥ ǫ > 0. Then for i = 1, . . . , k,

f(x(i)) − f ⋆ ≥ ǫ. Find N for which γi ≤ ǫ for i ≥ N . This implies the second term in the
numerator is at least ǫ:

(f(x(i))− f ∗) + (f
(i)
best − f ∗)− γi ≥ ǫ.

In particular, it is positive. It follows the terms in the sum above for i ≥ N are positive.
Let S denote the sum above, up to i = N − 1. (We assume k ≥ N .) We then have

k
∑

i=N

(f(x(i))− f
(i)
best + γi)((f(x

(i))− f ∗) + (f
(i)
best − f ∗)− γi)

‖g(i)‖22
≤ R2 − S.

We get a lower bound on the lefthand side using

f(x(i))− f
(i)
best + γi ≥ γi

along with the inequality above and ‖g(i)‖22 ≤ G to get

(ǫ/G2)
k
∑

i=N

γi ≤ R2 − S.

Since the lefthand side converges to ∞ and righthand side doesn’t depend on k, we see that
k cannot be too large.

4.3 Numerical example

Figure 3 shows the progress of the subgradient method with Polyak’s step size for the piece-
wise linear example from §3.5. Of course this isn’t fair, since we don’t know f ⋆ before
solving the problem. But this plot shows that even with this unfair advantage in choosing
step lengths, the subgradient method is pretty slow.

Figure 4 shows fk
best for the same example, with both the optimal step size, and the

estimated step size using γk = 10/(10 + k). In this example the Polyak step size with
estimated optimal value is just as good as the step size with known optimal value.

13

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

k

f
(k
)

b
es
t
−
f
⋆

Polyak
αk = 0.1/

√
k

αk = 1/k

Figure 3: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with Polyak’s step size (solid black line) and the subgradient methods with
diminishing step sizes considered in the previous example (dashed lines).

14

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

10
1

k

f
(k
)

b
es
t
−
f
⋆

optimal
estimated

Figure 4: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with Polyak’s step size (solid black line) and the estimated optimal step size
(dashed red line).

15

5 Alternating projections

Polyak’s step length can be used to derive some versions of the alternating projections method
for finding a point in the intersection of convex sets.

5.1 Finding a point in the intersection of convex sets

Suppose we want to find a point in

C = C1 ∩ · · · ∩ Cm,

where C1, . . . , Cm ⊆ Rn are closed and convex, and we assume that C is nonempty. We can
do this by minimizing the function

f(x) = max{dist(x, C1), . . . ,dist(x, Cm)},

which is convex, and has minimum value f ⋆ = 0 (since C is nonempty).
We first explain how to find a subgradient g of f at x. If f(x) = 0, we can take g = 0

(which in any case means we are done). Otherwise find an index j such that dist(x, Cj) =
f(x), i.e., find a set that has maximum distance to x. A subgradient of f is

g = ∇dist(x, Cj) =
x− ΠCj

(x)

‖x− ΠCj
(x)‖2

,

where ΠCj
is Euclidean projection onto Cj. Note that ‖g‖2 = 1, so we can take G = 1.

The subgradient algorithm update, with step size rule (5), and assuming that the index
j is one for which x(k) has maximum distance to Cj, is given by

x(k+1) = x(k) − αkg
(k)

= x(k) − f(x(k))
x(k) − ΠCj

(x(k))

‖x(k) − ΠCj
(x(k))‖2

= ΠCj
(x(k)).

Here we use ‖g(k)‖2 = 1 and f ⋆ = 0 in the second line, and

f(x(k)) = dist(x(k), Cj) = ‖x(k) − ΠCj
(x(k))‖2

in the third line.
The algorithm is very simple: at each step, we simply project the current point onto the

farthest set. This is an extension of the famous alternating projections algorithm. (When
there are just two sets, then at each step you project the current point onto the other set.
Thus the projections simply alternate.)

We are only guaranteed that f(x(k)) → f ⋆ = 0. In other words, a subsequence of our
points approaches a point in C; we are not guaranteed to actually find a point in C (except
in the limit). This can be addressed several ways. One way is to run the algorithm using

16

closed sets C̃i ⊆ intCi, so that x(k) → C̃ = C̃1 ∩ · · · ∩ C̃m. Then we are guaranteed that
x(k) ∈ C for some (finite) k.

Another method is to do over-projection at each step. Suppose we know the intersection
of the sets contains a Euclidean ball of radius ǫ. Its center is a point that is ǫ-deep in all the
sets. Then we can over project by ǫ, which roughly speaking means we project the current
point to the farthest set, and then keep moving a distance ǫ:

x(k+1) = ΠCj
(x(k))− ǫ

x(k) − ΠCj
(x(k))

‖x(k) − ΠCj
(x(k))‖2

.

Alternating projections is usually (but not always) applied when projection onto the sets
is simple. This is the case, for example, for the following sets.

• Affine set.

• Nonegative orthant.

• A halfspace or slab.

• A box, e.g., unit ball in ℓ∞.

• Unit simplex.

• A Euclidean ball.

• An ellipsoid (there is no closed-form expression for the projection, but it can be com-
puted very quickly.)

• A second-order cone.

• Cone of positive semidefinite matrices.

• Spectral norm matrix ball.

Alternating projections can be used, of course, in cases where a bit more computation is
needed to compute the Euclidean projection, e.g., for a polyhedron (which can be done by
solving a QP).

5.2 Solving convex inequalities

We want to find a point that satisfies fi(x) ≤ 0, i = 1, . . . ,m. (We assume we can find a
subgradient of each function, at any point.)

To solve this set of convex inequalities, we can minimize the unconstrained function
f(x) = maxi fi(x) using the subgradient method. If the set of inequalities is strictly feasible,
then f ⋆ is negative, and in a finite number of steps we’ll find a point with f(x) ≤ 0, i.e., a
feasible point.

17

We can also use the step size that uses knowledge of the optimal value, applied to the
function

f(x) = max{f1(x), . . . , fm(x),−ǫ},
where ǫ > 0 is a tolerance. Assuming there exists a point with fi(x) ≤ −ǫ, we can use the
step length

α =
f(x) + ǫ

‖g‖22
. (6)

We can give a simple interpretation of this step length, taking the case ǫ = 0 for simplicity.
Suppose the current point is x, and that fi(x) = f(x) > 0, with g ∈ ∂fi(x). Let x⋆ be any
point with fi(x

⋆) ≤ 0. Then we have

0 ≥ fi(x
⋆) ≥ fi(x) + gT (x⋆ − x),

i.e., x⋆ is in the halfspace

H = {z | 0 ≥ fi(x) + gT (z − x)}.

The subgradient update at x, using Polyak’s step length, is just projection of x onto the
halfspace H.

As an example we consider finding a point x ∈ Rn that satisfies a set of linear inequalities
aTi x ≤ bi, i = 1, . . . ,m. With ǫ = 0, the subgradient method is very simple: at each step, we
find the most violated inequality. Then we project the current point onto the set (halfspace)
of points that satisfy this particular inequality:

x(k+1) = x(k) − aTi x− bi
‖ai‖22

ai,

where i is the index of the most violated inequality at x(k).
We take a problem instance with n = 100 variables and m = 1000 inequalities, and

randomly generate the data, making sure that the set of inequalities is feasible. We use the
step size rule (6) with three different values of ǫ. Figure 5 shows the convergence for ǫ = 0,
ǫ = 0.01, and ǫ = 0.1. (We terminate the algorithm when we find a point that satisfies the
inequalities.)

5.3 Positive semidefinite matrix completion

We use the subgradient method with step size (5) to solve the positive semidefinite matrix

completion problem (see [BV04, exer. 4.47]). We briefly describe the problem. Suppose we
have a matrix in Sn with some of its entries (including all of its diagonal entries) fixed, and
the others to be found. The goal is to find values for the other entries so that the (completed)
matrix is positive semidefinite.

We use alternating projections onto the set of positive semidefinite matrices Sn
+, and the

set of matrices with the given fixed entries. (Projection is in the Frobenius norm sense.)

18

0 500 1000 1500
10

−6

10
−4

10
−2

10
0

10
2

k

m
ax

i(
a
T i
x
(k
)
−
b i
)

ǫ = 0
ǫ = 0.01
ǫ = 0.1

Figure 5: Convergence of the maximum violation for the linear feasibility problem,
where we use the subgradient method with Polyak’s step size and three different
values of tolerance ǫ.

The first projection can be found from the eigenvalue decomposition (see [BV04, §8.1.1]);
for example, let X =

∑n
i=1 λiqiq

T
i , then

Π(X) =
n
∑

i=1

max{0, λi}qiqTi .

The second projection is straightforward: we simply take the given matrix and set its fixed
entries back to the given fixed values. Thus, the algorithm will alternate between eigenvalue
decomposition and truncation, and re-setting the fixed entries back to their required values.

As a specific example we consider a randomly generated problem with a 50× 50 matrix
that is missing about half of its entries. The sparsity pattern of our particular matrix is
shown in figure 6. We initialize X(1) by taking the unknown entries to be 0.

To track convergence of the algorithm, we plot the Frobenius norm of the difference
between the current matrix and its projection onto one of the sets, i.e., ‖X(k+1) − X(k)‖F .
In the case of the projection onto the set of positive semidefinite matrices, this value is the
squareroot of the sum of the squares of the negative eigenvalues of X(k). In the case of the
other projection, it is the squareroot of the sum of the squares of the adjustments made to the
fixed entries of X(k). In each case, this distance gives an upper bound on the distance to the
intersection of the two sets, i.e., the distance to the nearest positive semidefinite completion.
The plot is shown in figure 7. We can see that the unknown entries are converging to a
positive semidefinite completion. By overprojecting onto Sn

+, we could have found an actual
positive semidefinite completion in a finite number of steps.

19

Figure 6: Sparsity pattern of the given matrix with blue entries corresponding to
fixed values and white entries corresponding to missing values.

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

k

‖X
(k
+
1
)
−

X
(k
) ‖

F

Figure 7: Convergence of the subgradient method for a matrix completion problem.

20

6 Projected subgradient method

One extension of the subgradient method is the projected subgradient method, which solves
the constrained convex optimization problem

minimize f(x)
subject to x ∈ C,

where C is a convex set. The projected subgradient method is given by

x(k+1) = Π
(

x(k) − αkg
(k)
)

,

where Π is (Euclidean) projection on C, and g(k) is any subgradient of f at x(k). The step
size rules described before can be used here, with similar convergence results. Note that
x(k) ∈ C, i.e., x(k) is feasible.

The convergence proofs for the subgradient method are readily extended to handle the
projected subgradient method. Let z(k+1) = x(k)−αkg

(k), i.e., a standard subgradient update,
before the projection back onto C. As in the subgradient method, we have

‖z(k+1) − x⋆‖22 = ‖x(k) − αkg
(k) − x⋆‖22

= ‖x(k) − x⋆‖22 − 2αkg
(k)T (x(k) − x⋆) + α2

k‖g(k)‖22
≤ ‖x(k) − x⋆‖22 − 2αk(f(x

(k))− f ⋆) + α2
k‖g(k)‖22.

Now we observe that

‖x(k+1) − x⋆‖2 = ‖Π(z(k+1))− x⋆‖2 ≤ ‖z(k+1) − x⋆‖2,

i.e., when we project a point onto C, we move closer to every point in C, and in particular,
any optimal point. Combining this with the inequality above we get

‖x(k+1) − x⋆‖22 ≤ ‖x(k) − x⋆‖22 − 2αk(f(x
(k))− f ⋆) + α2

k‖g(k)‖22,

and the proof proceeds exactly as in the ordinary subgradient method. Also, note that
Polyak’s step size can be applied here directly, and has the same convergence guarantee.

In some cases we can express the projected subgradient update in an alternative way.
When C is affine, i.e., C = {x | Ax = b}, where A is fat and full rank, the projection operator
is affine, and given by

Π(z) = z − AT (AAT)−1(Az − b).

In this case, we can simplify the subgradient update to

x(k+1) = x(k) − αk(I − AT (AAT)−1A)g(k), (7)

where we use Ax(k) = b. Thus, we simply project the current subgradient onto the nullspace
of A, and then update as usual. The update (7) is not the same as the projected subgradient
update when C is not affine, because in this case the projection operator is not affine.

21

0 500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

Figure 8: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with the Polyak estimated step size rule γk = 100/k.

6.1 Numerical example

We consider the least l1-norm problem

minimize ‖x‖1
subject to Ax = b,

(8)

where the variable is x ∈ Rn, and the data are A ∈ Rm×n and b ∈ Rm. We assume that A
is fat and full rank, i.e., m < n and RankA = m. Of course, this problem is readily solved
using linear programming.

A subgradient of the objective at x is given by g = sign(x). Thus, the projected subgra-
dient update is

x(k+1) = x(k) − αk(I − AT (AAT)−1A) sign(x(k)).

We consider an instance of the problem (8) with n = 1000 and m = 50, with ran-
domly generated A and b. We use the least-norm solution as the starting point, i.e.,
x(1) = AT (AAT)−1b. In order to report f

(k)
best − f ⋆, we solve the problem using linear pro-

gramming and obtain f ⋆ ≈ 3.2. Figure 8 shows the progress of the projected subgradient
method with the Polyak estimated step size rule γk = 100/k.

22

6.2 Projected subgradient for dual problem

One famous application of the projected subgradient method is to the dual problem. We
start with the (convex) primal problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

We’ll assume, for simplicity, that for each λ � 0, the Lagrangian

L(x, λ) = f0(x) +
m
∑

i=1

λifi(x)

has a unique minimizer over x, which we denote x⋆(λ). The dual function is then

g(λ) = inf
x
L(x, λ) = f0(x

⋆(λ)) +
m
∑

i=1

λifi(x
⋆(λ))

(for λ � 0). The dual problem is

maximize g(λ)
subject to λ � 0.

We’ll assume that Slater’s condition holds (again, for simplicity), so we can solve the primal
problem by finding an optimal point λ⋆ of the dual, and then taking x⋆ = x⋆(λ⋆). (For a
discussion of solving the primal problem via the dual, see [BV04, §5.5.5].)

We will solve the dual problem using the projected subgradient method,

λ(k+1) =
(

λ(k) − αkh
)

+
, h ∈ ∂(−g)(λ(k)).

Let’s now work out a subgradient of the negative dual function. Since −g is a supremum of
a family of affine functions of λ, indexed by x, we can find a subgradient by finding one of
these functions that achieves the supremum. But there is just one, and it is

−f0(x
⋆(λ))−

m
∑

i=1

λifi(x
⋆(λ)),

which has gradient (with respect to λ)

h = −(f1(x
⋆(λ)), . . . , fm(x

⋆(λ)) ∈ ∂(−g)(λ).

(Our assumptions imply that −g has only one element in its subdifferential, which means
g is differentiable. Differentiability means that a small enough constant step size will yield
convergence. In any case, the projected subgradient method can be used in cases where the
dual is nondifferentiable.)

23

The projected subgradient method for the dual has the form

x(k) = argmin
x

(

f0(x) +
m
∑

i=1

λ
(k)
i fi(x)

)

λ
(k+1)
i =

(

λ
(k)
i + αkfi(x

(k))
)

+
.

In this algorithm, the primal iterates x(k) are not feasible, but become feasible only in
the limit. (Sometimes we can find a method for constructing a feasible, suboptimal x̃(k)

from x(k).) The dual function values g(λ(k)), as well as the primal function values f0(x
(k)),

converge to f ⋆ = f0(x
⋆).

We can interpret λi as the price for a ‘resource’ with usage measured by fi(x). When we
calculate x⋆(λ), we are finding the x that minimizes the total cost, i.e., the objective plus
the total bill (or revenue) for the resources used. The goal is to adjust the prices so that
the resource usage is within budget (i.e., fi(x) ≤ 0). At each step, we increase the price λi

if resource i is over-utilized (i.e., fi(x) > 0), and we decrease the price λi if resource i is
under-utilized (i.e., fi(x) < 0). But we never let prices get negative (which would encourage,
rather than discourage, resource usage).

In general, there is no reason to solve the dual instead of the primal. But for specific
problems there can be an advantage.

6.3 Numerical example

We consider the problem of minimizing a strictly convex quadratic function over the unit
box:

minimize (1/2)xTPx− qTx
subject to x2

i ≤ 1, i = 1, . . . , n,

where P ≻ 0. The Lagrangian is

L(x, λ) = (1/2)xT (P + diag(2λ))x− qTx− 1Tλ,

so x⋆(λ) = (P + diag(2λ))−1q. The projected subgradient algorithm for the dual is

x(k) = (P + diag(2λ(k)))−1q, λ
(k+1)
i =

(

λ
(k)
i + αk((x

(k)
i)2 − 1)

)

+
.

The dual function is differentiable, so we can use a fixed size α (provided it is small enough).
The iterates x(k) are not feasible. But we can construct a nearby feasible x̃(k) as

x̃
(k)
i =















1 x
(k)
i > 1

−1 x
(k)
i < −1

x
(k)
i −1 ≤ x

(k)
i ≤ 1.

We consider an instance with n = 50. We start the algorithm with λ(1) = 1, and use a
fixed step size α = 0.1. Figure 9 shows the convergence of g(λ(k)) (a lower bound on the
optimal value) and f0(x̃

(k)) (an upper bound on the optimal value), versus iterations.

24

5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

k

lo
w
er

an
d
u
p
p
er

b
ou

n
d
s

f0(x̃
(k))

g(λ(k))

Figure 9: The values of the lower bound g(λ(k)) and the upper bound f0(x̃
(k)),

versus the iteration number k. We use the fixed step size with α = 0.1.

25

7 Subgradient method for constrained optimization

The subgradient algorithm can be extended to solve the inequality constrained problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi are convex. The algorithm takes the same form:

x(k+1) = x(k) − αkg
(k),

where αk > 0 is a step size, and g(k) is a subgradient of the objective or one of the constraint
functions at x(k). More specifically, we take

g(k) ∈
{

∂f0(x
(k)) fi(x

(k)) ≤ 0, i = 1, . . . ,m,
∂fj(x

(k)) fj(x
(k)) > 0.

In other words: If the current point is feasible, we use an objective subgradient, as if the
problem were unconstrained; if the current point is infeasible, we choose any violated con-
straint, and use a subgradient of the associated constraint function. (In the latter case, we
can choose any of the violated constraints, if there is more than one.)

In this generalized version of the subgradient algorithm, the iterates can be (and often
are) infeasible. In contrast, the iterates of the projected subgradient method (and of course,
the basic subgradient algorithm) are always feasible.

As in the basic subgradient method, we keep track of the best (feasible) point found so
far:

f
(k)
best = min{f0(x(i)) | x(i) feasible, i = 1, . . . , k}.

(If none of the points x(1), . . . , x(k) is feasible, then f
(k)
best = ∞.)

We assume that Slater’s condition holds, i.e., the problem is strictly feasible: there is
some point xsf with fi(x

sf) < 0, i = 1, . . . ,m. We also assume that the problem has an
optimal point x⋆. We assume that there are numbers R and G with ‖x(1) − x⋆‖2 ≤ R,
‖x(1) − xsf‖2 ≤ R, and ‖g(k)‖2 ≤ G for all k.

We’ll establish convergence of the generalized subgradient method using diminishing non-
summable αk. (Similar results can be obtained for other step size rules.) We claim that

f
(k)
best → f ⋆ as k → ∞. This implies in particular that we obtain a feasible iterate within
some finite number of steps.

Assume that f
(k)
best → f ⋆ does not occur. Then there exists some ǫ > 0 so that f

(k)
best ≥ f ⋆+ǫ

for all k, which in turn means that f(x(k)) ≥ f ⋆ + ǫ for all k for which x(k) is feasible. We’ll
show this leads to a contradiction.

We first find a point x̃ and positive number µ that satisfy

f0(x̃) ≤ f ⋆ + ǫ/2, f1(x̃) ≤ −µ, . . . , fm(x̃) ≤ −µ.

Such a point is ǫ/2-suboptimal, and also satisfies the constraints with a margin of µ. We
will take x̃ = (1− θ)x⋆ + θxsf , where θ ∈ (0, 1). We have

f0(x̃) ≤ (1− θ)f ⋆ + θf0(x
sf),

26

so if we choose θ = min{1, (ǫ/2)/(f0(xsf)− f ⋆)}, we have f0(x̃) ≤ f ⋆ + ǫ/2. We have

fi(x̃) ≤ (1− θ)fi(x
⋆) + θfi(x

sf) ≤ θfi(x
sf),

so we can take
µ = −θmin

i
fi(x

sf).

Consider any index i ∈ {1, . . . , k} for which x(i) is feasible. Then we have g(i) ∈ ∂f0(x
(i)),

and also f0(x
(i)) ≥ f ⋆+ǫ. Since x̃ is ǫ/2-suboptimal, we have f0(x

(i))−f0(x̃) ≥ ǫ/2. Therefore

‖x(i+1) − x̃‖22 = ‖x(i) − x̃‖22 − 2αig
(i)T (x(i) − x̃) + α2

i ‖g(i)‖22
≤ ‖x(i) − x̃‖22 − 2αi(f0(x

(i))− f0(x̃)) + α2
i ‖g(i)‖22

≤ ‖x(i) − x̃‖22 − αiǫ+ α2
i ‖g(i)‖22.

In the second line here we use the usual subgradient inequality

f0(x̃) ≥ f0(x
(i)) + g(i)T (x̃− x(i)).

Now suppose that i ∈ {1, . . . , k} is such that x(i) is infeasible, and that g(i) ∈ ∂fp(x
(i)),

where fp(x
(i)) > 0. Since fp(x̃) ≤ −µ, we have fp(x

(i))− fp(x̃) ≥ µ. Therefore

‖x(i+1) − x̃‖22 = ‖x(i) − x̃‖22 − 2αig
(i)T (x(i) − x̃) + α2

i ‖g(i)‖22
≤ ‖x(i) − x̃‖22 − 2αi(fp(x

(i))− fp(x̃)) + α2
i ‖g(i)‖22

≤ ‖x(i) − x̃‖22 − 2αiµ+ α2
i ‖g(i)‖22.

Thus, for every iteration we have

‖x(i+1) − x̃‖22 ≤ ‖x(i) − x̃‖22 − αiδ + α2
i ‖g(i)‖22,

where δ = min{ǫ, 2µ} > 0. Applying this inequality recursively for i = 1, . . . , k, we get

‖x(k+1) − x̃‖22 ≤ ‖x(1) − x̃‖22 − δ
k
∑

i=1

αi +
k
∑

i=1

α2
i ‖g(i)‖22.

It follows that

δ
k
∑

i=1

αi ≤ R2 +G2
k
∑

i=1

α2
i ,

which cannot hold for large k since

R2 +G2∑k
i=1 α

2
i

∑k
i=1 αi

converges to zero as k → ∞.
There are many variations on the basic step size rule. For example, when the current

point is infeasible, we can use an over-projection step length, as we would when solving

27

convex inequalities. If we know (or estimate) f ⋆, we can use Polyak’s step length when the
current point is feasible. Thus our step lengths are chosen as

αk =

{

(f0(x
(k))− f ⋆)/‖g(k)‖22 x(k) feasible

(fi(x
(k)) + ǫ)/‖g(k)‖22 x(k) infeasible

where ǫ is a small positive margin, and i is the index of the most violated inequality in the
case when x(k) is infeasible.

7.1 Numerical example

We consider a linear program

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

(9)

with variable x ∈ Rn. The objective and constraint functions are affine, and so have only
one subgradient, independent of x. For the objective function we have g = c, and for the ith
constraint we have gi = ai.

We solve an instance of the problem (9) with n = 20 and m = 200 using the subgradient

method. In order to report f
(k)
best − f ⋆, we solve the LP using the interior-point methods

and obtain f ⋆ ≈ −3.4. Figure 10 shows progress of the subgradient method, which uses the
square summable step size with αk = 1/k for the optimality update, and the step size (6)
with ǫ = 10−3 for the feasibility update. The objective value only changes for the iterations
when x(k) is feasible.

28

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

k

f
(k
)

b
es
t
−
f
⋆

Figure 10: The value of f
(k)
best − f⋆ versus the iteration number k. In this case, we

use the square summable step size with αk = 1/k for the optimality update.

29

8 Primal-dual subgradient method

The primal-dual subgradient method is an extension of the subgradient method that solves
constrained convex optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

with variable x ∈ Rn, where the functions f0, . . . , fm : Rn → R are convex, not necessarily
differentiable, and have domain Rn. In the following sections, we will consider problems that
have the equality constraint only, or inequality constraints only, and show the method with
proof of its convergence. Extending these ideas to handle problems with both inequality and
equality constraints is simple.

8.1 Equality constrained problems

In this section, we consider the equality constrained problem

minimize f(x)
subject to Ax = b,

with variable x ∈ Rn. We assume that A ∈ Rm×n, i.e., there are m equality constraints.
Note that (ρ/2)‖Ax− b‖22, where ρ > 0, can be added to the objective without changing

the optimal value or the set of optimal points. Thus, from now on, we focus on solving the
so-called augmented problem

minimize f(x) + (ρ/2)‖Ax− b‖22
subject to Ax = b.

Let L(x, ν) = f(x)+νT (Ax−b)+(ρ/2)‖Ax−b‖22 denote the Lagrangian for the augmented
problem, which is also called the augmented Lagrangian. We define a set-valued mapping T
by

T (x, ν) =

[

∂xL(x, ν)
−∂νL(x, ν)

]

=

[

∂f(x) + ATν + ρAT (Ax− b)
b− Ax

]

.

(We mention that T is the KKT operator associated with the augmented Lagrangian, and
is a monotone operator.) The optimality condition for the augmented problem (and the
original one as well) is

0 ∈ T (x⋆, ν⋆).

Such a primal-dual pair is a saddle-point of the augmented Lagrangian:

L(x⋆, ν) ≤ L(x⋆, ν⋆) ≤ L(x, ν⋆)

for all x and all ν.

30

The primal-dual subgradient method finds a saddle point of the Lagrangian by the simple
iteration that resembles the Uzawa iteration (see [BPV97]):

z(k+1) = z(k) − αkT
(k),

where z(k) = (x(k), ν(k)) is the kth iterate of the primal and dual variables, T (k) is any element
of T (z(k)), and αk > 0 is the kth step size. By expanding it out, we can also write the method
as

x(k+1) = x(k) − αk

(

g(k) + ATν(k) + ρAT (Ax(k) − b)
)

ν(k+1) = ν(k) + αk(Ax
(k) − b).

Here, g(k) is any subgradient of f at x(k). Notice that x(k) is not necessarily feasible.
Let z⋆ = (x⋆, ν⋆) be any pair of optimal variables, satisfying

Ax⋆ = b, 0 ∈ ∂xL(x
⋆, ν⋆).

We use p⋆ = f(x⋆) to denote the optimal value. We prove that the algorithm converges, i.e.,

lim
k→∞

f(x(k)) = p⋆, lim
k→∞

‖Ax(k) − b‖2 = 0,

using the step size rule αk = γk/‖T (k)‖2, where γk is chosen so that

γk > 0,
∞
∑

k=1

γk = ∞,
∞
∑

k=1

γ2
k = S < ∞.

For the convergence proof, we will assume that a number R is known that satisfies
R ≥ ‖z(1)‖2 and R ≥ ‖z⋆‖2. We will also assume that the norm of the subgradients of f is
bounded on compact sets.

We start by writing out a basic identity

‖z(k+1) − z⋆‖22 = ‖z(k) − z⋆‖22 − 2αkT
(k)T (z(k) − z⋆) + α2

k‖T (k)‖22

= ‖z(k) − z⋆‖22 − 2γk
T (k)T

‖T (k)‖2
(z(k) − z⋆) + γ2

k .

By summing it over k and rearranging the terms, we get

‖z(k+1) − z⋆‖22 + 2
k
∑

i=0

γi
T (i)T

‖T (i)‖2
(z(i) − z⋆) = ‖z(1) − z⋆‖22 +

k
∑

i=0

γ2
i ≤ 4R2 + S. (10)

We argue that the sum on the lefthand side is nonnegative. The monotonicity of T directly
implies this, but it can be shown without using monotonicity. First, we expand out as

T (k)T (z(k) − z⋆) = (g(k) + ATν(k) + ρAT (Ax(k) − b))T (x(k) − x⋆)− (Ax(k) − b)T (ν(k) − ν⋆).

31

Since Ax⋆ = b, the first term further expands to

g(k)T (x(k) − x⋆) + ν(k)T (Ax(k) − b) + ρ‖Ax(k) − b‖22.

By subtracting the second term and using the definition of subgradient,

T (k)T (z(k) − z⋆) = g(k)T (x(k) − x⋆) + ν⋆T (Ax(k) − b) + ρ‖Ax(k) − b‖22
≥ f(x(k))− p⋆ + ν⋆T (Ax(k) − b) + ρ‖Ax(k) − b‖22
= L(x(k), ν⋆)− L(x⋆, ν⋆) + (ρ/2)‖Ax(k) − b‖22
≥ 0.

The last line uses the fact that x⋆ minimizes L(x, ν⋆) over x.
Since both terms on the lefthand side of (10) are nonnegative, for all k, we have

‖z(k+1) − z⋆‖22 ≤ 4R2 + S, 2
k
∑

i=0

γi
T (i)T

‖T (i)‖2
(z(i) − z⋆) ≤ 4R2 + S,

for all k. We assumed that ‖z⋆‖2 is bounded, so the first inequality implies that z(k) cannot
be too far from the origin. In other words, there exists a number D satisfying ‖z(k)‖2 ≤ D
for all k, namely D = R +

√
4R2 + S. By assumption, the norm of subgradients on the set

‖x(k)‖2 ≤ D is bounded, so it follows that ‖T (k)‖2 is bounded.
Because the sum of γk diverges, for the sum

k
∑

i=0

γi
T (i)T

‖T (i)‖2
(z(i) − z⋆)

to be bounded, we need

lim
k→∞

T (k)T

‖T (k)‖2
(z(k) − z⋆) = 0.

However, since ‖T (k)‖2 is bounded, the numerator T (k)T (z(k) − z⋆) has to go to zero in the
limit. Note that the inequality

0 ≤ L(x(k), ν⋆)− L(x⋆, ν⋆) + (ρ/2)‖Ax(k) − b‖22 ≤ T (k)T (z(k) − z⋆),

together with the fact that L(x(k), ν⋆) − L(x⋆, ν⋆) ≥ 0 and (ρ/2)‖Ax(k) − b‖22 ≥ 0, implies
that

lim
k→∞

L(x(k), ν⋆) = L(x⋆, ν⋆) = p⋆, lim
k→∞

‖Ax(k) − b‖2 = 0.

Finally,

p⋆ = lim
k→∞

L(x(k), ν⋆) = lim
k→∞

f(x(k)) + lim
k→∞

ν⋆T (Ax(k) − b) = lim
k→∞

f(x(k)).

This proves the convergence of the algorithm.

32

8.2 Inequality constrained problems

The method from the previous section can be modified to handle inequality constrained
problems. Suppose that we want to solve the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

with variable x ∈ Rn.
Notice that (ρ/2)

∑m
i=1(fi(x)+)

2, with ρ > 0, can be added to the objective without
changing the optimal value or the set of optimal. Thus, from now on, we focus on solving
the augmented problem

minimize f0(x) + (ρ/2)‖F (x)‖22
subject to F (x) � 0,

where F is defined by

F (x) =









f1(x)+
...

fm(x)+









.

Let L(x, λ) = f0(x) + λTF (x) + (ρ/2)‖F (x)‖22 be the augmented Lagrangian. We define a
set-valued mapping T by

T (x, λ) =

[

∂xL(x, λ)
−∂λL(x, λ)

]

=

[

∂f0(x) +
∑m

i=1(λi + ρfi(x)+)∂fi(x)+
−F (x)

]

.

The optimality condition for the augmented problem is then

0 ∈ T (x⋆, λ⋆).

Such a primal-dual pair is a saddle-point of the augmented Lagrangian:

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆)

for all x and all λ.
The primal-dual subgradient method can be written as

z(k+1) = z(k) − αkT
(k),

where z(k) = (x(k), λ(k)) is the kth iterate of the primal and dual variables, T (k) is any element
of T (z(k)), and αk > 0 is the kth step size. By expanding it out, we can also write the method
as

x(k+1) = x(k) − αk

(

g
(k)
0 +

m
∑

i=1

(λ
(k)
i + ρfi(x

(k))+)g
(k)
i

)

λ
(k+1)
i = λ

(k)
i + αkfi(x

(k)), i = 1, . . . ,m.

33

Here, g
(k)
i is any subgradient of fi at x

(k).
The convergence proof goes similarly. Let z⋆ = (x⋆, λ⋆) be any pair of optimal variables.

That is,
F (x⋆) = 0, 0 ∈ ∂xL(x

⋆, λ⋆).

Let p⋆ = f0(x
⋆) denote the optimal value. We prove that

lim
k→∞

f0(x
(k)) = p⋆, lim

k→∞

‖F (x(k))‖2 = 0,

using the step size rule αk = γk/‖T (k)‖2, where γk is square summable but not summable.
We will also assume that the norm of the subgradients of each fi, and the values of f1, . . . , fm
are bounded on compact sets.

We start with the same basic inequality obtained in the previous section:

‖z(k+1) − z⋆‖22 + 2
k
∑

i=0

γi
T (i)T

‖T (i)‖2
(z(i) − z⋆) ≤ 4R2 + S.

Again, we claim that the sum on the lefthand side is nonnegative. By expanding out,

T (k)T (z(k) − z⋆) =

(

g
(k)
0 +

m
∑

i=1

(λ
(k)
i + ρfi(x

(k))+)g
(k)
i

)T

(x(k) − x⋆)

−F (x(k))
T
(λ(k) − λ⋆).

Here, g
(k)
i denotes any subgradient of (fi)+ at x(k). By definition of subgradient, for the

objective function, we have

g
(k)T
0 (x(k) − x⋆) ≥ f0(x

(k))− p⋆,

and for the constraints,

g
(k)T
i (x(k) − x⋆) ≥ fi(x

(k))+ − fi(x
⋆)+ = fi(x

(k))+, i = 1, . . . ,m.

Using these, we have

T (k)T (z(k) − z⋆) ≥ f0(x
(k))− p⋆ + λ⋆TF (x(k)) + ρ‖F (x(k))‖22

= L(x(k), λ⋆)− L(x⋆, λ⋆) + (ρ/2)‖F (x(k))‖22
≥ 0.

The last line is true because x⋆ minimizes L(x, λ⋆) over x. The rest of the proof proceeds
exactly the same as in the case of equality constrained problems.

34

8.3 Numerical example

We consider a linear program

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

with variable x ∈ Rn. The objective is affine, so the only subgradient of it, independent of
x, is given by g0 = c. For the ith constraint, the following is a valid subgradient at x:

gi =

{

ai aTi x > bi
0 aTi x ≤ bi.

Let A be the matrix whose ith row is aTi . We can explicitly write the update rule for the
primal-dual method as

x(k+1) = x(k) − αk

(

c+ ATM (k)(λ(k) + ρ(Ax(k) − b)+)
)

λ(k+1) = λ(k) + αk(Ax
(k) − b)+,

where the notation x+ denotes the vector obtained by taking the positive part of each element
of x, and M (k) is a diagonal matrix given by

M
(k)
ii =

{

1 aTi x
(k) > bi

0 aTi x
(k) ≤ bi.

We solve the same instance of the problem appeared in §7.1 using the primal-dual sub-
gradient method. In order to report f

(k)
best − p⋆, we solve the LP using the interior-point

methods and obtain p⋆ ≈ −3.4. Figure 11 shows progress of the primal-dual subgradient
method, which uses the step size γk = 1/k.

35

0 500 1000 1500 2000 2500
10

−6

10
−4

10
−2

10
0

10
2

k

|f(x(k))− p⋆|
maxi(a

T
i x− bi)

Figure 11: The suboptimality |f(x(k))− p⋆| (in blue), and the maximum violation
of the constraints maxi=1,...,m(aTi x− bi) (in red), versus the iteration number k. In
this case, we use the square summable sequence γk = 1/k to determine the step
sizes.

36

9 Speeding up subgradient methods

Several general approaches can be used to speed up subgradient methods. Localization meth-

ods such as cutting-plane and ellipsoid methods also require the evaluation of one subgradient
per iteration, but require more computation to carry out the update. They are typically much
faster than subgradient methods. Some of these methods have real (non-heuristic) stopping
criteria.

9.1 Heavy ball methods

Another general approach is to base the update on some conic combination of previously
evaluated subgradients. In bundle methods, the update direction is found as the least-norm
convex combination of some (‘bundle’ of) previous subgradients. (This gives an approxima-
tion of the steepest descent direction.)

One general class of methods uses an update direction that is a conic combination of the
current negative subgradient and the last search direction, as in

x(k+1) = x(k) − αkg
(k) + βk(x

(k) − x(k−1))

where αk and βk are positive. (There are many other ways to express this update.) Such
algorithms have state, whereas the basic subgradient method is stateless (except for the
iteration number). We can interpret the second term as a memory term, or as a momentum
term, in the algorithm. Polyak refers to some algorithms of this form as the heavy ball

method. Conjugate gradients methods have a similar form.
We describe two examples of these types of methods, that use a known (or estimated)

value of f ⋆ to determine step lengths. Each has an update of the form

x(k+1) = x(k) − αks
(k), αk =

f(x(k))− f ⋆

‖s(k)‖22
,

where s(k) is a direction to be used in place of a subgradient. In the simple method, s(k) is
just a filtered, or smoothed, version of the subgradients:

s(k) = (1− β)g(k) + βs(k−1),

where 0 ≤ β < 1 is a (constant) filter parameter that controls how much memory the
algorithm has. When β = 0 we obtain the subgradient method with Polyak’s step size.

A more sophisticated method for updating s(k) was proposed by Camerini, Fratta, and
Maffioli [CFM75]. Their algorithm has the form

s(k) = g(k) + βks
(k−1), (11)

where
βk = max{0,−γk(s

(k−1))T g(k)/‖s(k−1)‖22}.
Here γk ∈ [0, 2]; they recommend using the constant value γk = 1.5.

37

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

k

f
(k
)

b
es
t
−
f
⋆

Polyak
filtered β = 0.25
CFM

Figure 12: The value of f
(k)
best − f⋆ versus iteration number k, for the subgradient

method with two types of Polyak’s step sizes, the original update when β = 0
(dashed black line) and a filtered update with β = 0.25 (solid blue line). The plot
also shows the subgradient method with CFM step size (dash dotted green line).

They show that
(x(k) − x⋆)T s(k)

‖s(k)‖22
≥ (x(k) − x⋆)T g(k)

‖g(k)‖22
,

i.e., the direction with modified update has a smaller angle towards the optimal set than the
negative subgradient. (It follows that the convergence proofs for the subgradient algorithm
work for this one as well.)

To illustrate these acceleration techniques, we consider again our piecewise-linear mini-
mization example. We use the CFM algorithm and its simpler update rule given above for
β = 0 and β = 0.25. Figure 12 shows the progress of these algorithms.

Acknowledgments

We thank Lieven Vandenberghe, Lin Xiao, and Almir Mutapcic, who helped with earlier
versions of these notes.

38

References

[Akg84] M. Akgül. Topics in Relaxation and Ellipsoidal Methods, volume 97 of Research
Notes in Mathematics. Pitman, 1984.

[Ber99] D. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

[BPV97] J. Bramble, J. Pasciak, and A. Vassilev. Analysis of the inexact uzawa algorithm
for saddle point problems. SIAM Journal on Numerical Analysis, 34(3):1072–1092,
1997.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[CFM75] P. Camerini, L. Fratta, and F. Maffioli. On improving relaxation methods by
modifying gradient techniques. Math. Programming Study, 3:26–34, 1975.

[CZ97] Y. Censor and S. Zenios. Parallel Optimization. Oxford University Press, 1997.

[NB01] A. Nedić and D. Bertsekas. Incremental subgradient methods for nondifferentiable
optimization. SIAM J. on Optimization, 12:109–138, 2001.

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

[Nes09] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical

Programming, 120(1):221–259, 2009.

[NY83] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Op-

timization. Wiley-Interscience, 1983.

[Pol87] B. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

[Rus06] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.

[Sho85] N. Shor. Minimization Methods for Non-differentiable Functions. Springer Series
in Computational Mathematics. Springer, 1985.

[Sho98] N. Shor. Nondifferentiable Optimization and Polynomial Problems. Nonconvex
Optimization and its Applications. Kluwer, 1998.

39

