Subgradient Methods

updated: April 7, 2022

- subgradient method and stepsize rules
- convergence results and proof
- optimal step size and alternating projections
- speeding up subgradient methods

Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable convex function f

$$x^{(k+1)} = x^{(k)} - \alpha_k q^{(k)}$$

- $x^{(k)}$ is the kth iterate
- $g^{(k)}$ is **any** subgradient of f at $x^{(k)}$
- $\alpha_k > 0$ is the kth step size

not a descent method, so we keep track of best point so far

$$f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$$

Step size rules

step sizes are fixed ahead of time

- constant step size: $\alpha_k = \alpha$ (constant)
- constant step length: $\alpha_k = \gamma / \|g^{(k)}\|_2$ (so $\|x^{(k+1)} x^{(k)}\|_2 = \gamma$)
- square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

• nonsummable diminishing: step sizes satisfy

$$\lim_{k \to \infty} \alpha_k = 0, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

Assumptions

- $f^* = \inf_x f(x) > -\infty$, with $f(x^*) = f^*$
- $||g||_2 \le G$ for all $g \in \partial f$ (equivalent to Lipschitz condition on f)
- $||x^{(1)} x^*||_2 \le R$

these assumptions are stronger than needed, just to simplify proofs

Convergence results

define $\bar{f} = \lim_{k \to \infty} f_{\text{best}}^{(k)}$

- constant step size: $\bar{f} f^* \leq G^2 \alpha/2$, i.e., converges to $G^2 \alpha/2$ -suboptimal (converges to f^* if f differentiable, α small enough)
- constant step length: $\bar{f} f^* \leq G\gamma/2$, i.e., converges to $G\gamma/2$ -suboptimal
- diminishing step size rule: $\bar{f} = f^{\star}$, i.e., converges

Convergence proof

key quantity: Euclidean distance to the optimal set, not the function value

let x^* be any minimizer of f

$$||x^{(k+1)} - x^{\star}||_{2}^{2} = ||x^{(k)} - \alpha_{k}g^{(k)} - x^{\star}||_{2}^{2}$$

$$= ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}g^{(k)T}(x^{(k)} - x^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2}$$

$$\leq ||x^{(k)} - x^{\star}||_{2}^{2} - 2\alpha_{k}(f(x^{(k)}) - f^{\star}) + \alpha_{k}^{2}||g^{(k)}||_{2}^{2}$$

using
$$f^* = f(x^*) \ge f(x^{(k)}) + g^{(k)T}(x^* - x^{(k)})$$

apply recursively to get

$$||x^{(k+1)} - x^*||_2^2 \le ||x^{(1)} - x^*||_2^2 - 2\sum_{i=1}^k \alpha_i (f(x^{(i)}) - f^*) + \sum_{i=1}^k \alpha_i^2 ||g^{(i)}||_2^2$$

$$\le R^2 - 2\sum_{i=1}^k \alpha_i (f(x^{(i)}) - f^*) + G^2 \sum_{i=1}^k \alpha_i^2$$

now we use

$$\sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) \ge (f_{\text{best}}^{(k)} - f^*) \left(\sum_{i=1}^{k} \alpha_i\right)$$

to get

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}.$$

constant step size: for $\alpha_k = \alpha$ we get

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{R^2 + G^2 k \alpha^2}{2k\alpha}$$

righthand side converges to $G^2\alpha/2$ as $k\to\infty$

constant step length: for $\alpha_k = \gamma/\|g^{(k)}\|_2$ we get

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + \sum_{i=1}^k \alpha_i^2 \|g^{(i)}\|_2^2}{2\sum_{i=1}^k \alpha_i} \le \frac{R^2 + \gamma^2 k}{2\gamma k/G},$$

righthand side converges to $G\gamma/2$ as $k\to\infty$

square summable but not summable step sizes:

suppose step sizes satisfy

$$\sum_{i=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

then

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

as $k\to\infty$, numerator converges to a finite number, denominator converges to ∞ , so $f_{\mathrm{best}}^{(k)}\to f^\star$

Stopping criterion

• terminating when $\frac{R^2+G^2\sum_{i=1}^k\alpha_i^2}{2\sum_{i=1}^k\alpha_i}\leq\epsilon$ is really, really, slow

• optimal choice of α_i to achieve $\frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i} \le \epsilon$ for smallest k:

$$\alpha_i = (R/G)/\sqrt{k}, \quad i = 1, \dots, k$$

number of steps required: $k = (RG/\epsilon)^2$

• the truth: there really isn't a good stopping criterion for the subgradient method . . .

Example: Piecewise linear minimization

minimize
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

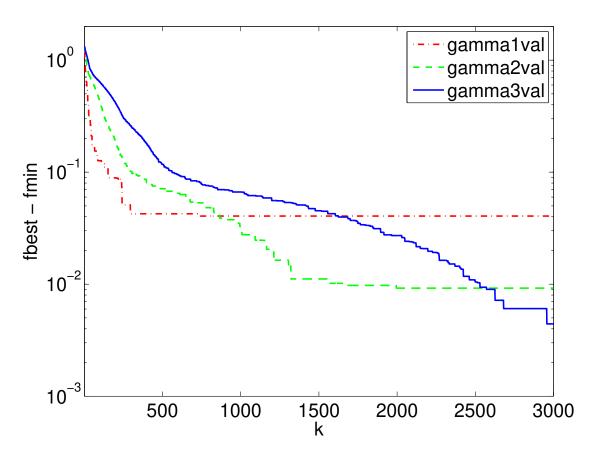
to find a subgradient of f: find index j for which

$$a_j^T x + b_j = \max_{i=1,...,m} (a_i^T x + b_i)$$

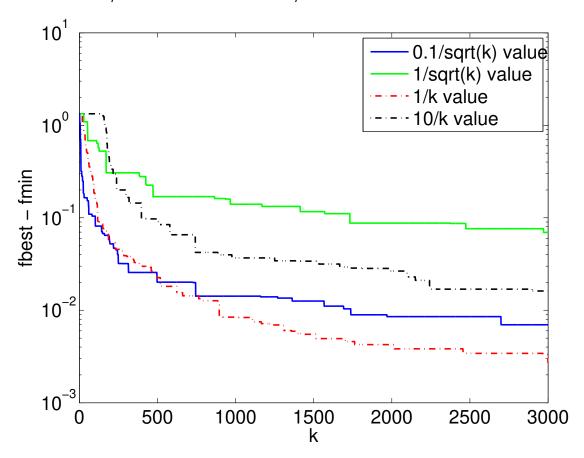
and take $g = a_j$

subgradient method: $x^{(k+1)} = x^{(k)} - \alpha_k a_j$

problem instance with n=20 variables, m=100 terms, $f^\star\approx 1.1$ $f_{\rm best}^{(k)}-f^\star$, constant step length $\gamma=0.05,0.01,0.005$



diminishing step rules $\alpha_k=0.1/\sqrt{k}$ and $\alpha_k=1/\sqrt{k}$, square summable step size rules $\alpha_k=1/k$ and $\alpha_k=10/k$



Optimal step size when f^* is known

• choice due to Polyak:

$$\alpha_k = \frac{f(x^{(k)}) - f^*}{\|g^{(k)}\|_2^2}$$

(can also use when optimal value is estimated)

motivation: start with basic inequality

$$||x^{(k+1)} - x^*||_2^2 \le ||x^{(k)} - x^*||_2^2 - 2\alpha_k(f(x^{(k)}) - f^*) + \alpha_k^2 ||g^{(k)}||_2^2$$

and choose α_k to minimize righthand side

yields

$$||x^{(k+1)} - x^*||_2^2 \le ||x^{(k)} - x^*||_2^2 - \frac{(f(x^{(k)}) - f^*)^2}{||g^{(k)}||_2^2}$$

(in particular, $||x^{(k)} - x^{\star}||_2$ decreases each step)

applying recursively,

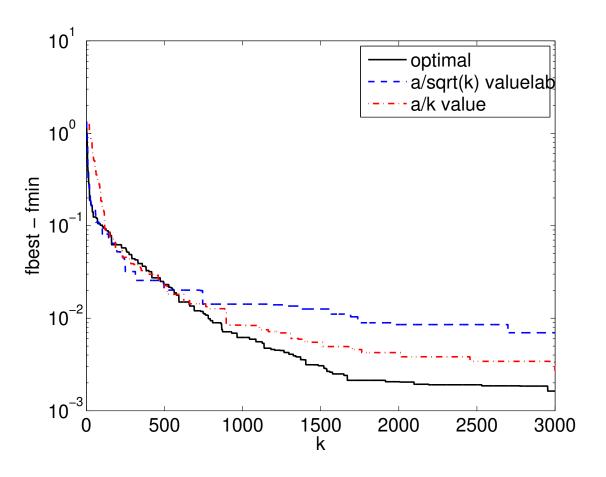
$$\sum_{i=1}^{k} \frac{(f(x^{(i)}) - f^{\star})^2}{\|g^{(i)}\|_2^2} \le R^2$$

and so

$$\sum_{i=1}^{k} (f(x^{(i)}) - f^{\star})^2 \le R^2 G^2$$

which proves $f(x^{(k)}) \to f^*$

PWL example with Polyak's step size, $\alpha_k = 0.1/\sqrt{k}$, $\alpha_k = 1/k$



Finding a point in the intersection of convex sets

 $C = C_1 \cap \cdots \cap C_m$ is nonempty, $C_1, \ldots, C_m \subseteq \mathbf{R}^n$ closed and convex

find a point in C by minimizing

$$f(x) = \max\{\mathbf{dist}(x, C_1), \dots, \mathbf{dist}(x, C_m)\}\$$

with $\mathbf{dist}(x, C_j) = f(x)$, a subgradient of f is

$$g = \nabla \operatorname{dist}(x, C_j) = \frac{x - P_{C_j}(x)}{\|x - P_{C_j}(x)\|_2}$$

subgradient update with optimal step size:

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

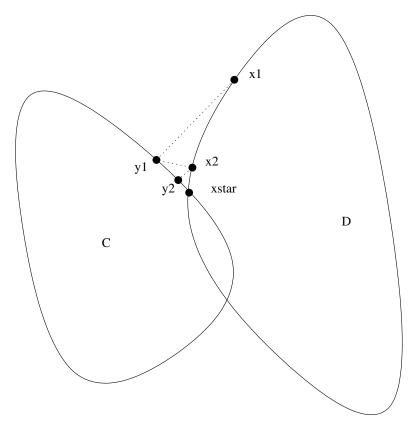
$$= x^{(k)} - f(x^{(k)}) \frac{x - P_{C_j}(x)}{\|x - P_{C_j}(x)\|_2}$$

$$= P_{C_j}(x^{(k)})$$

- a version of the famous alternating projections algorithm
- at each step, project the current point onto the farthest set
- \bullet for m=2 sets, projections alternate onto one set, then the other
- ullet convergence: $\mathbf{dist}(x^{(k)},C) o 0$ as $k o \infty$

Alternating projections

first few iterations:



... $x^{(k)}$ eventually converges to a point $x^\star \in C_1 \cap C_2$

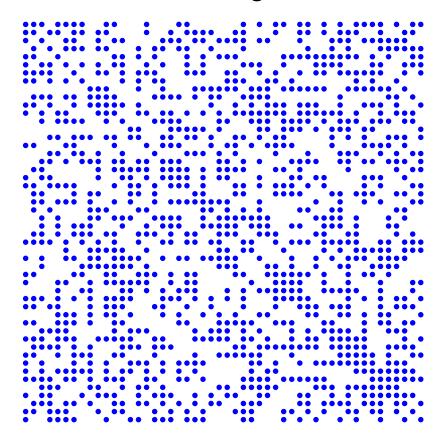
Example: Positive semidefinite matrix completion

- ullet some entries of matrix in $oldsymbol{S}^n$ fixed; find values for others so completed matrix is PSD
- $C_1 = \mathbf{S}_+^n$, C_2 is (affine) set in \mathbf{S}^n with specified fixed entries
- projection onto C_1 by eigenvalue decomposition, truncation: for $X = \sum_{i=1}^{n} \lambda_i q_i q_i^T$,

$$P_{C_1}(X) = \sum_{i=1}^{n} \max\{0, \lambda_i\} q_i q_i^T$$

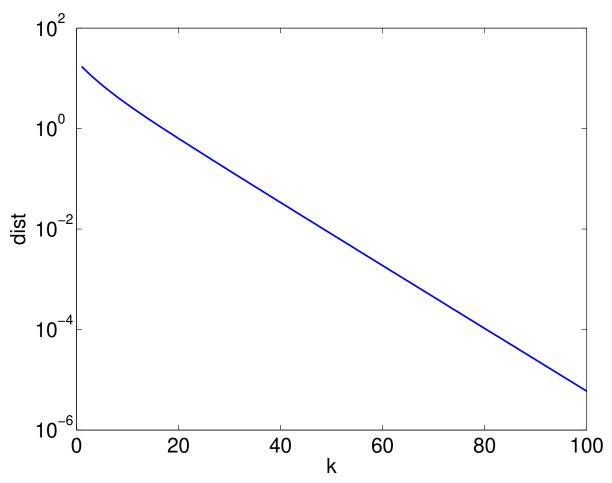
ullet projection of X onto C_2 by re-setting specified entries to fixed values

specific example: 50×50 matrix missing about half of its entries



ullet initialize $X^{(1)}$ with unknown entries set to 0

convergence is linear:



EE364b, Stanford University

Polyak step size when f^* isn't known

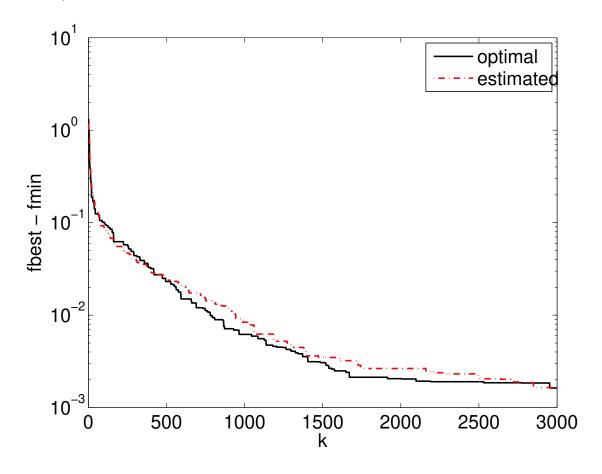
• use step size

$$\alpha_k = \frac{f(x^{(k)}) - f_{\text{best}}^{(k)} + \gamma_k}{\|g^{(k)}\|_2^2}$$

with
$$\sum_{k=1}^{\infty} \gamma_k = \infty$$
, $\sum_{k=1}^{\infty} \gamma_k^2 < \infty$

- $f_{\text{best}}^{(k)} \gamma_k$ serves as estimate of f^*
- ullet γ_k is in scale of objective value
- ullet can show $f_{\mathrm{best}}^{(k)} o f^{\star}$

PWL example with Polyak's step size, using $f^{\star},$ and estimated with $\gamma_k=10/(10+k)$



Speeding up subgradient methods

- subgradient methods are very slow
- often convergence can be improved by keeping memory of past steps

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)} + \beta_k (x^{(k)} - x^{(k-1)})$$

(heavy ball method)

other ideas: localization methods, conjugate directions, . . .

A couple of speedup algorithms

$$x^{(k+1)} = x^{(k)} - \alpha_k s^{(k)}, \qquad \alpha_k = \frac{f(x^{(k)}) - f^*}{\|s^{(k)}\|_2^2}$$

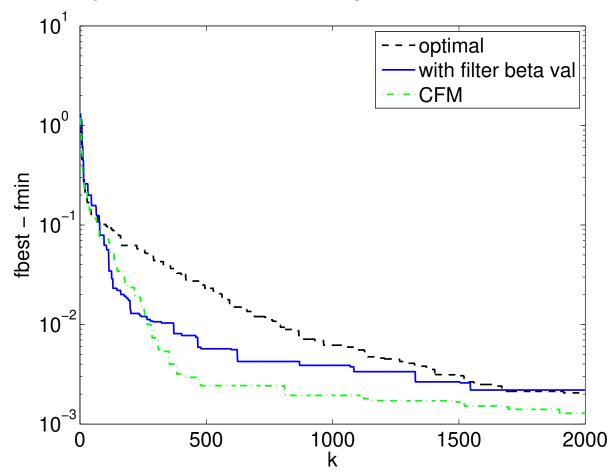
(we assume f^* is known or can be estimated)

- 'filtered' subgradient, $s^{(k)} = (1-\beta)g^{(k)} + \beta s^{(k-1)}$, where $\beta \in [0,1)$
- Camerini, Fratta, and Maffioli (1975)

$$s^{(k)} = g^{(k)} + \beta_k s^{(k-1)}, \qquad \beta_k = \max\{0, -\gamma_k (s^{(k-1)})^T g^{(k)} / \|s^{(k-1)}\|_2^2\}$$

where $\gamma_k \in [0,2)$ ($\gamma_k = 1.5$ 'recommended')

PWL example, Polyak's step, filtered subgradient, CFM step



Optimality of the subgradient method

• optimal choice of α_i to achieve $f_{\text{best}}^{(k)} - f^* \leq \frac{R^2 + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i} \leq \epsilon$:

$$\alpha_i = (R/G)/\sqrt{k}, \quad i = 1, \dots, k$$

number of steps required: $k = (RG/\epsilon)^2$

- $f_{\text{best}}^{(k)} f^{\star} \leq \frac{RG}{\sqrt{k}}$ after k iterations
- this is optimal among first order methods based on subgradients

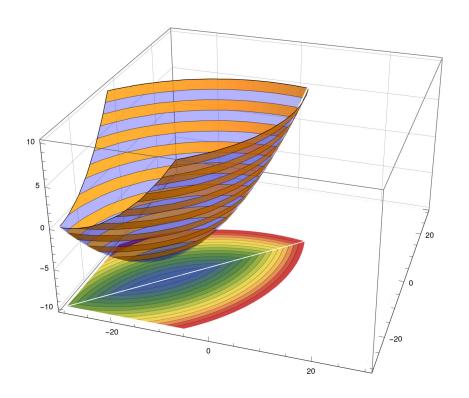
Subgradient oracle

- ullet we query a point x
- ullet oracle returns a subgradient $g \in \partial f(x)$ and the function value f(x)
- there exists a convex function such that

$$f_{\text{best}}^{(k)} - f^{\star} \ge \frac{RG}{\sqrt{k}}$$

Worst case function

• Suppose $x \in \mathbf{R}^n$ and let $f(x) = \max_{1 \le i \le k} x_i + \frac{\lambda}{2} ||x||_2^2$



Resisting oracle

- $f(x) = \max_{1 \le i \le k} x_i + \frac{\lambda}{2} ||x||_2^2$
- f(x) is minimized at

$$x^* = \begin{cases} -\frac{1}{\lambda k}, & 1 \le i \le k \\ 0, & k+1 \le i \le n \end{cases}$$

with optimal value $f(x^*) = -\frac{1}{2\lambda k}$

- $e_i + \lambda x$ is a subgradient
- it can be checked that $0 \in \partial f(x^*)$

suppose that the subgradient oracle returns the subgradient

$$e_{i^*} + \lambda x \in \partial f(x) = \partial \max_{1 \le i \le k} x_i + \frac{\lambda}{2} ||x||_2^2$$

where i^* is the first index such that $x_{i^*} = \max_{1 \le i \le k} x_i$

• we initialize at $x_0 = 0$, $f(x_0) = 0$ and observe that

$$x_{1} = \begin{bmatrix} -\alpha_{1}, & 0 & , & 0 & , & ..., & 0 \end{bmatrix}^{T} \qquad f(x_{1}) \geq 0$$

$$x_{2} = \begin{bmatrix} -(\alpha_{1} + \lambda \alpha_{2}), & -\alpha_{2}, & 0, & ..., & 0 \end{bmatrix}^{T} \qquad f(x_{2}) \geq 0$$

$$\vdots$$

$$x_{k-1} = \begin{bmatrix} -*, & -*, & -*, ..., & , & -*, -*, & 0 & ..., & 0 \end{bmatrix}^{T} \qquad f(x_{k-1}) \geq 0$$
first $k-1$ coordinates

Lower bound

• we can set λ to control $R = \|x_0 - x^*\|_2$ and $G = \|\partial f(x)\|_2$ and obtain

$$f_{\text{best}}^{(k)} - f^* \ge \frac{RG}{2(1+\sqrt{k})}$$

the lower bound matches the earlier upper bound

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{RG}{\sqrt{k}}$$

up to constants

- subgradient method is optimal among first-order methods
- localization methods can achieve better complexity