Subgradient Methods

- subgradient method and stepsize rules
- convergence results and proof
- optimal step size and alternating projections
- speeding up subgradient methods
Subgradient method

The **subgradient method** is a simple algorithm to minimize nondifferentiable convex function f

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

- $x^{(k)}$ is the kth iterate
- $g^{(k)}$ is **any** subgradient of f at $x^{(k)}$
- $\alpha_k > 0$ is the kth step size

Not a descent method, so we keep track of best point so far

$$f_{\text{best}}^{(k)} = \min_{i=1,\ldots,k} f(x^{(i)})$$
Step size rules

step sizes are fixed ahead of time

• constant step size: $\alpha_k = \alpha$ (constant)

• constant step length: $\alpha_k = \gamma / \|g^{(k)}\|_2$ (so $\|x^{(k+1)} - x^{(k)}\|_2 = \gamma$)

• square summable but not summable: step sizes satisfy

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

• nonsummable diminishing: step sizes satisfy

$$\lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$
Assumptions

• $f^* = \inf_x f(x) > -\infty$, with $f(x^*) = f^*

• $\|g\|_2 \leq G$ for all $g \in \partial f$ (equivalent to Lipschitz condition on f)

• $\|x^{(1)} - x^*\|_2 \leq R$

these assumptions are stronger than needed, just to simplify proofs
Convergence results

define $\bar{f} = \lim_{k \to \infty} f_{\text{best}}^{(k)}$

- **constant step size**: $\bar{f} - f^* \leq G^2 \alpha / 2$, i.e.,
 converges to $G^2 \alpha / 2$-suboptimal
 (converges to f^* if f differentiable, α small enough)

- **constant step length**: $\bar{f} - f^* \leq G \gamma / 2$, i.e.,
 converges to $G \gamma / 2$-suboptimal

- **diminishing step size rule**: $\bar{f} = f^*$, i.e.,
 converges
Convergence proof

key quantity: Euclidean distance to the optimal set, not the function value

let x^* be any minimizer of f

\[
\|x^{(k+1)} - x^*\|_2^2 = \|x^{(k)} - \alpha_k g^{(k)} - x^*\|_2^2 \\
= \|x^{(k)} - x^*\|_2^2 - 2\alpha_k g^{(k)T} (x^{(k)} - x^*) + \alpha_k^2 \|g^{(k)}\|_2^2 \\
\leq \|x^{(k)} - x^*\|_2^2 - 2\alpha_k (f(x^{(k)}) - f^*) + \alpha_k^2 \|g^{(k)}\|_2^2
\]

using $f^* = f(x^*) \geq f(x^{(k)}) + g^{(k)T} (x^* - x^{(k)})$
apply recursively to get

$$\|x^{(k+1)} - x^*\|_2^2 \leq \|x^{(1)} - x^*\|_2^2 - 2 \sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2$$

$$\leq R^2 - 2 \sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) + G^2 \sum_{i=1}^{k} \alpha_i^2$$

now we use

$$\sum_{i=1}^{k} \alpha_i (f(x^{(i)}) - f^*) \geq (f^{(k)}_{\text{best}} - f^*) \left(\sum_{i=1}^{k} \alpha_i \right)$$

to get

$$f^{(k)}_{\text{best}} - f^* \leq \frac{R^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i}.$$
constant step size: for $\alpha_k = \alpha$ we get

$$f^{(k)}_{\text{best}} - f^* \leq \frac{R^2 + G^2 k \alpha^2}{2k \alpha}$$

righthand side converges to $G^2 \alpha/2$ as $k \to \infty$

constant step length: for $\alpha_k = \gamma / \|g^{(k)}\|_2$ we get

$$f^{(k)}_{\text{best}} - f^* \leq \frac{R^2 + \sum_{i=1}^{k} \alpha_i^2 \|g^{(i)}\|_2^2}{2 \sum_{i=1}^{k} \alpha_i} \leq \frac{R^2 + \gamma^2 k}{2 \gamma k / G},$$

righthand side converges to $G \gamma / 2$ as $k \to \infty$
square summable but not summable step sizes:
suppose step sizes satisfy

\[\sum_{i=1}^{\infty} \alpha_i^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty \]

then

\[f_{\text{best}}^{(k)} - f^* \leq \frac{R^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i} \]

as \(k \to \infty \), numerator converges to a finite number, denominator converges to \(\infty \), so \(f_{\text{best}}^{(k)} \to f^* \)
Stopping criterion

- terminating when \(\frac{R^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i} \leq \epsilon \) is really, really, slow

- optimal choice of \(\alpha_i \) to achieve \(\frac{R^2 + G^2 \sum_{i=1}^{k} \alpha_i^2}{2 \sum_{i=1}^{k} \alpha_i} \leq \epsilon \) for smallest \(k \):
 \[
 \alpha_i = \frac{(R/G)\sqrt{k}}{\sqrt{k}}, \quad i = 1, \ldots, k
 \]

 number of steps required: \(k = \left(\frac{RG}{\epsilon}\right)^2 \)

- the truth: there really isn’t a good stopping criterion for the subgradient method . . .
Example: Piecewise linear minimization

minimize $f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i)$

to find a subgradient of f: find index j for which

$$a_j^T x + b_j = \max_{i=1,\ldots,m} (a_i^T x + b_i)$$

and take $g = a_j$

subgradient method: $x^{(k+1)} = x^{(k)} - \alpha_k a_j$
problem instance with $n = 20$ variables, $m = 100$ terms, $f^* \approx 1.1$

$f_{\text{best}}^{(k)} - f^*$, constant step length $\gamma = 0.05, 0.01, 0.005$
diminishing step rules $\alpha_k = 0.1/\sqrt{k}$ and $\alpha_k = 1/\sqrt{k}$, square summable step size rules $\alpha_k = 1/k$ and $\alpha_k = 10/k$
Optimal step size when f^* is known

- choice due to Polyak:

$$\alpha_k = \frac{f(x^{(k)}) - f^*}{\|g^{(k)}\|_2^2}$$

(can also use when optimal value is estimated)

- motivation: start with basic inequality

$$\|x^{(k+1)} - x^*\|_2^2 \leq \|x^{(k)} - x^*\|_2^2 - 2\alpha_k(f(x^{(k)}) - f^*) + \alpha_k^2\|g^{(k)}\|_2^2$$

and choose α_k to minimize righthand side
• yields
\[\|x^{(k+1)} - x^*\|_2^2 \leq \|x^{(k)} - x^*\|_2^2 - \frac{(f(x^{(k)}) - f^*)^2}{\|g(k)\|_2^2} \]
(in particular, \(\|x^{(k)} - x^*\|_2\) decreases each step)

• applying recursively,
\[\sum_{i=1}^{k} \frac{(f(x^{(i)}) - f^*)^2}{\|g^{(i)}\|_2^2} \leq R^2 \]

and so
\[\sum_{i=1}^{k} (f(x^{(i)}) - f^*)^2 \leq R^2G^2 \]

which proves \(f(x^{(k)}) \to f^*\)
PWL example with Polyak’s step size, $\alpha_k = 0.1/\sqrt{k}$, $\alpha_k = 1/k$
Finding a point in the intersection of convex sets

$C = C_1 \cap \cdots C_m$ is nonempty, $C_1, \ldots, C_m \subseteq \mathbb{R}^n$ closed and convex

find a point in C by minimizing

$$f(x) = \max \{ \text{dist}(x, C_1), \ldots, \text{dist}(x, C_m) \}$$

with $\text{dist}(x, C_j) = f(x)$, a subgradient of f is

$$g = \nabla \text{dist}(x, C_j) = \frac{x - P_{C_j}(x)}{\|x - P_{C_j}(x)\|_2}$$
subgradient update with optimal step size:

\[
\begin{align*}
x^{(k+1)} &= x^{(k)} - \alpha_k g^{(k)} \\
&= x^{(k)} - f(x^{(k)}) \frac{x - PC_j(x)}{\|x - PC_j(x)\|_2} \\
&= PC_j(x^{(k)})
\end{align*}
\]

- a version of the famous alternating projections algorithm
- at each step, project the current point onto the farthest set
- for \(m = 2 \) sets, projections alternate onto one set, then the other
- convergence: \(\text{dist}(x^{(k)}, C) \to 0 \) as \(k \to \infty \)
Alternating projections

first few iterations:

\[x^{(1)} \]
\[x^{(2)} \]
\[x^{(3)} \]
\[x^{(4)} \]

\[\cdots \]

\[x^{(k)} \] eventually converges to a point \(x^* \in C_1 \cap C_2 \)
Example: Positive semidefinite matrix completion

- some entries of matrix in \mathbf{S}^n fixed; find values for others so completed matrix is PSD
- $C_1 = \mathbf{S}_+^n$, C_2 is (affine) set in \mathbf{S}^n with specified fixed entries
- projection onto C_1 by eigenvalue decomposition, truncation: for $X = \sum_{i=1}^{n} \lambda_i q_i q_i^T$,

$$P_{C_1}(X) = \sum_{i=1}^{n} \max\{0, \lambda_i\} q_i q_i^T$$

- projection of X onto C_2 by re-setting specified entries to fixed values
specific example: 50×50 matrix missing about half of its entries

- initialize $X^{(1)}$ with unknown entries set to 0
convergence is linear:

\[\|X^{(k+1)} - X^{(k)}\|_F \]

against \(k\)
Polyak step size when f^* isn’t known

• use step size

$$
\alpha_k = \frac{f(x^{(k)}) - f^{(k)}_{\text{best}} + \gamma_k}{\|g^{(k)}\|^2/2}
$$

with $\sum_{k=1}^{\infty} \gamma_k = \infty$, $\sum_{k=1}^{\infty} \gamma_k^2 < \infty$

• $f^{(k)}_{\text{best}} - \gamma_k$ serves as estimate of f^*

• γ_k is in scale of objective value

• can show $f^{(k)}_{\text{best}} \rightarrow f^*$
PWL example with Polyak’s step size, using f^*, and estimated with
$\gamma_k = 10/(10 + k)$

![Graph showing the decrease of $f(k) - f^*$ and $f_{best}(k) - f^*$ with increasing k on a logarithmic scale.]
Speeding up subgradient methods

• subgradient methods are very slow

• often convergence can be improved by keeping memory of past steps

\[x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)} + \beta_k (x^{(k)} - x^{(k-1)}) \]

(heavy ball method)

other ideas: localization methods, conjugate directions, . . .
A couple of speedup algorithms

\[x^{(k+1)} = x^{(k)} - \alpha_k s^{(k)}, \quad \alpha_k = \frac{f(x^{(k)}) - f^*}{\|s^{(k)}\|^2} \]

(we assume \(f^* \) is known or can be estimated)

- ‘filtered’ subgradient, \(s^{(k)} = (1 - \beta)g^{(k)} + \beta s^{(k-1)} \), where \(\beta \in [0, 1) \)

- Camerini, Fratta, and Maffioli (1975)

\[s^{(k)} = g^{(k)} + \beta_k s^{(k-1)}, \quad \beta_k = \max\{0, -\gamma_k (s^{(k-1)})^T g^{(k)}/\|s^{(k-1)}\|^2\} \]

where \(\gamma_k \in [0, 2) \) (\(\gamma_k = 1.5 \) ‘recommended’)

EE364b, Stanford University 25
PWL example, Polyak’s step, filtered subgradient, CFM step

\[f(k) \rightarrow f^* \]

- Polyak
- filtered $\beta = 0.25$
- CFM

\[f(k) \rightarrow f^* \]

k