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Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable
convex function f

2041 — () (k)

— Qkg
o (%) is the kth iterate

e ¢'%) is any subgradient of f at z(F)

e oy > 0 is the kth step size

not a descent method, so we keep track of best point so far

(k) —  min f(:c(i))

best 1k
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Step size rules
step sizes are fixed ahead of time

e constant step size: oy = a (constant)
e constant step length: i, = v/||g"¥||2 (so ||z*+tY) — 2Ky = )

e square summable but not summable: step sizes satisfy

0. 0.
E ozi<oo, g Q= OO
k=1

k=1

e nonsummable diminishing: step sizes satisfy

©.@)
lim ap =0, g ap = OO
k— o0 1
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Assumptions

o f*=inf, f(x) > —oo, with f(a*) = f*
e |gll2 < G forall g € Of (equivalent to Lipschitz condition on f)

o |2V —2*2 <R

these assumptions are stronger than needed, just to simplify proofs
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Convergence results

define f = limy_,o0 fir),

e constant step size: f— f*< G2a/2, 7.€.,
converges to GZa/2-suboptimal
(converges to f* if f differentiable, a small enough)

e constant step length: f — f* < Gv/2, i.e.,
converges to Gy /2-suboptimal

e diminishing step size rule: f = f*, i.e., converges
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Convergence proof

key quantity: Euclidean distance to the optimal set, not the function value

let £* be any minimizer of f

(D) g

|l

<

o ® — g — 23
2 ® — 7|3 = 20197 () — 2%) + 0] g

2 ® — 25 = 200 (f (@) = 1) + aR g™

using f* = f(z*) > f(a®) 4+ gFT (z* — 2(F)
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apply recursively to get

k k
2™ =23 < (2 =2t -2) ai(f@) = )+ ) afllg™3

k k
< R*-— ZZai(f(x(i)) — )+ GQZ&?
i=1 i=1

NOwW we usSeE

> ai(F(@) = ) 2 (Foed = ) (Z az-)

=1

to get

(k) £
best 9 Z]-C_l o
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constant step size: for o = a we get

- R? + G?ka?

(k) rx
U 2k

best

righthand side converges to G%a/2 as k — oo

constant step length: for o, = v/||g"*)||> we get

k i
i) _ pr o B Dy adlgVlE B2 4 0%
best 227]:{;:1 s = 2’7]{/G ’

righthand side converges to Gv/2 as k — oo
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square summable but not summable step sizes:
suppose step sizes satisfy

oo ¢
g oy < 00, g QU = 00
i=1 k=1

then .
2 2 2
k
izji:i::l(li
as k — oo, numerator converges to a finite number, denominator
conver (k) *
ges to 00, SO fy.i — f

best
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Stopping criterion

R? + G* Zle o

e terminating when - L < e is really, really, slow
22 i1

e optimal choice of «; to achieve - ~ < ¢ for smallest k:

number of steps required: k = (RG /¢)?

e the truth: there really isn't a good stopping criterion for the subgradient
method . . .
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Example: Piecewise linear minimization

minimize f(z) = max;—1, _m(al z +b;)

go

to find a subgradient of f: find index 5 for which

a?x +b; = max (al'z + b;)

1=1,....m

and take g = a;

subgradient method: z*+1) = z(*) — qyq;
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problem instance with n = 20 variables, m = 100 terms, f* ~

é:it — f*, constant step length v = 0.05,0.01, 0.005
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diminishing step rules o, = 0.1/vk and ay, = 1/Vk, square summable
step size rules ax = 1/k and oy = 10/k
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Optimal step size when f* is known

e choice due to Polyak:

f@®) —f*
lg™113

(can also use when optimal value is estimated)

A —

e motivation: start with basic inequality
| — a5 < [la™) — 2|3 = 205 (f (™) = 1) + agllg™13
and choose «;, to minimize righthand side
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e yields

(k)Y _ £*\2
(k+1) 55*”% < Hx(k) . 55*”% . (f(:C ) f )

x
| Gl
(in particular, ||z(®) — z*||5 decreases each step)
e applying recursively,
k (z) *\2
Z (') = f*) < R?
— Hg(")Hg
and so
k .
> (f@™) = f)? < R*G?
i=1

which proves f(z(®)) — f*
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PWL example with Polyak's step size, aj, = 0.1/Vk, oy, = 1/k
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Finding a point in the intersection of convex sets

C=C,n---C,, is nonempty, C1,...,C,, C R" closed and convex

find a point in C' by minimizing
f(x) = max{dist(xz, Cy),...,dist(z,C),)}
with dist(x,C;) = f(x), a subgradient of f is

r — Pc,.(z)
lz = P, () ]l2

g = VdiSt(CE‘, C]) —
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subgradient update with optimal step size:

B k) g ()

r — Pc.(z)
lz = Pe;(z)]|2

— (k) _ f(x(k))
— ch(w(k))

e a version of the famous alternating projections algorithm

e at each step, project the current point onto the farthest set

e for m = 2 sets, projections alternate onto one set, then the other

e convergence: dist(z*),C) = 0 as k — oo

EE364b, Stanford University

17



Alternating projections

first few iterations:

.. z(F) eventually converges to a point z* € C; N Cy
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Example: Positive semidefinite matrix completion

e some entries of matrix in S™ fixed; find values for others so completed
matrix is PSD

o (1 =87, Cyis (affine) set in S™ with specified fixed entries

e projection onto C; by eigenvalue decomposition, truncation: for
T
X =3l Naiq;

Po,(X) = Z max{0, \;}¢;q;
1=1

e projection of X onto (5 by re-setting specified entries to fixed values
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specific example: 50 x 50 matrix missing about half of its entries

20

e initialize X with unknown entries set to 0
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convergence is linear:
10°

dist
o
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Polyak step size when [~ isn’t known

e use step size

F@™) — fied +m

lgt113

A —

with 522, 7 = 00, T2 4% < 00

(k)

best — Yk S€rves as estimate of f*

® 7 is in scale of objective value

e can show félzgt — f*
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PWL example with Polyak’s step size, using f*, and estimated with
v = 10/(10 + k)
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Speeding up subgradient methods

e subgradient methods are very slow

e often convergence can be improved by keeping memory of past steps

(heavy ball method)

other ideas: localization methods, conjugate directions, . . .
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A couple of speedup algorithms

(k)y — f*
ot1) _ (k) _ o (k) _fE) =
N Pl

(we assume f* is known or can be estimated)

o ‘filtered’ subgradient, s(*) = (1 — 3)g(®) + Bs*=1) where 5 € [0, 1)
e Camerini, Fratta, and Maffioli (1975)

where v; € [0,2) (vx = 1.5 ‘recommended’)
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PWL example, Polyak’s step, filtered subgradient, CFM step
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Optimality of the subgradient method

R* 4+ G* Zle o
2 Zf:l g

e optimal choice of «; to achieve félzgt — <

o; = (R/G)/VE, i=1,....k
number of steps required: k = (RG/¢)?
o K _ f* < S fter k iterations

best Vk

e this is optimal among first order methods based on subgradients
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Subgradient oracle

® we query a point x
e oracle returns a subgradient g € f(x) and the function value f(x)

e there exists a convex function such that

. _RG
@2 50

vk
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Worst case function

e Suppose z € R” and let f(z) = maxi<;<x¥; + 5|73
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Resisting oracle

o f(r)=maxi<i<iT;+ %HwH%

e f(x) is minimized at

with optimal value f(z*) = —53%
® ¢; + Ax is a subgradient

e it can be checked that 0 € Of(x*)
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e suppose that the subgradient oracle returns the subgradient

W
i+ Av € Of () = 0 max @i + |3

where 7* is the first index such that x;+ = max;<;<j ;

e we initialize at xo = 0, f(x¢) = 0 and observe that

T

L1 = [_0417 0 ) 0 INERED 0 } f(xl)

Ty = [-(a1+Aay), -ag, 0, .., 0 ] f(22)
T

Lk—1 = [;*7 TR, R, _*7_>57 0 LS 0 ] f(xk—l)

- V -
first kK — 1 coordinates
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Lower bound

e we can set \ to control R = ||zg — x*||2 and G = ||0f(x)||2 and obtain

(K) _ prs RG
best — 2(1 —I—\/E)

e the lower bound matches the earlier upper bound

. RG
) e 27

vk

up to constants
e subgradient method is optimal among first-order methods

e |ocalization methods can achieve better complexity
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