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1 Definition

We say a vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ dom f if for all z ∈ dom f ,

f(z) ≥ f(x) + gT (z − x). (1)

If f is convex and differentiable, then its gradient at x is a subgradient. But a subgradient
can exist even when f is not differentiable at x, as illustrated in figure 1. The same example
shows that there can be more than one subgradient of a function f at a point x.

There are several ways to interpret a subgradient. A vector g is a subgradient of f at x
if the affine function (of z) f(x) + gT (z − x) is a global underestimator of f . Geometrically,
g is a subgradient of f at x if (g,−1) supports epi f at (x, f(x)), as illustrated in figure 2.

A function f is called subdifferentiable at x if there exists at least one subgradient at
x. The set of subgradients of f at the point x is called the subdifferential of f at x, and
is denoted ∂f(x). A function f is called subdifferentiable if it is subdifferentiable at all
x ∈ dom f .

Example. Absolute value. Consider f(z) = |z|. For x < 0 the subgradient is unique:

∂f(x) = {−1}. Similarly, for x > 0 we have ∂f(x) = {1}. At x = 0 the subdifferential

is defined by the inequality |z| ≥ gz for all z, which is satisfied if and only if g ∈ [−1, 1].

Therefore we have ∂f(0) = [−1, 1]. This is illustrated in figure 3.

2 Basic properties

The subdifferential ∂f(x) is always a closed convex set, even if f is not convex. This follows
from the fact that it is the intersection of an infinite set of halfspaces:

∂f(x) =
⋂

z∈dom f

{g | f(z) ≥ f(x) + gT (z − x)}.

In addition, if f is continuous at x, then the subdifferential ∂f(x) is bounded. Indeed, choose
some ε > 0 such that that −∞ < f ≤ f(y) ≤ f <∞ for all y ∈ Rn such that ‖y − x‖2 ≤ ε.
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Figure 1: At x1, the convex function f is differentiable, and g1 (which is the
derivative of f at x1) is the unique subgradient at x1. At the point x2, f is not
differentiable. At this point, f has many subgradients: two subgradients, g2 and g3,
are shown.
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Figure 2: A vector g ∈ Rn is a subgradient of f at x if and only if (g,−1) defines
a supporting hyperplane to epi f at (x, f(x)).
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Figure 3: The absolute value function (left), and its subdifferential ∂f(x) as a
function of x (right).
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If ∂f(x) is unbounded, then there is a sequence gn ∈ ∂f(x) such that ‖gn‖2 →∞. Taking the
sequence yn = x+ εgn/ ‖gn‖2, we find that f(yn) ≥ f(x) + gTn (yn−x) = f(x) + ε ‖gn‖2 →∞,
which is a contradiction to f(yn) being bounded.

2.1 Existence of subgradients

If f is convex and x ∈ int dom f , then ∂f(x) is nonempty and bounded. To establish that
∂f(x) 6= ∅, we apply the supporting hyperplane theorem to the convex set epi f at the
boundary point (x, f(x)), to conclude the existence of a ∈ Rn and b ∈ R, not both zero,
such that [

a
b

]T ([
z
t

]
−
[

x
f(x)

])
= aT (z − x) + b(t− f(x)) ≤ 0

for all (z, t) ∈ epi f . This implies b ≤ 0, and that

aT (z − x) + b(f(z)− f(x)) ≤ 0

for all z. If b 6= 0, we can divide by b to obtain

f(z) ≥ f(x)− (a/b)T (z − x),

which shows that −a/b ∈ ∂f(x). Now we show that b 6= 0, i.e., that the supporting
hyperplane cannot be vertical. If b = 0 we conclude that aT (z − x) ≤ 0 for all z ∈ dom f .
This is impossible since x ∈ int dom f .

This discussion shows that a convex function has a subgradient at x if there is at least
one nonvertical supporting hyperplane to epi f at (x, f(x)). This is the case, for example, if
f is continuous. There are pathological convex functions which do not have subgradients at
some points, but we will assume in the sequel that all convex functions are subdifferentiable
(at every point in dom f).

2.2 Subgradients of differentiable functions

If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}, i.e., its gradient is its only
subgradient. Conversely, if f is convex and ∂f(x) = {g}, then f is differentiable at x and
g = ∇f(x).

2.3 The minimum of a nondifferentiable function

A point x? is a minimizer of a function f (not necessarily convex) if and only if f is subdif-
ferentiable at x? and

0 ∈ ∂f(x?),

i.e., g = 0 is a subgradient of f at x?. This follows directly from the fact that f(x) ≥ f(x?)
for all x ∈ dom f . And clearly if f is subdifferentiable at x? with 0 ∈ ∂f(x?), then f(x) ≥
f(x?) + 0T (x− x?) = f(x?) for all x.
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While this simple characterization of optimality via the subdifferential holds for noncon-
vex functions, it is not particularly useful in that case, since we generally cannot find the
subdifferential of a nonconvex function.

The condition 0 ∈ ∂f(x?) reduces to ∇f(x?) = 0 when f is convex and differentiable at
x?.

2.4 Directional derivatives and subgradients

For convex functions f , the directional derivative of f at the point x ∈ Rn in the direction
v is

f ′(x; v)
∆
= lim

t↘0

f(x+ tv)− f(x)

t
.

This quantity always exists for convex f , though it may be +∞ or −∞. To see the existence
of the limit, we use that the ratio (f(x+ tv)−f(x))/t is non-decreasing in t. For 0 < t1 ≤ t2,
we have 0 ≤ t1/t2 ≤ 1, and

f(x+ t1v)− f(x)

t1
=
f( t1

t2
(x+ t2v) + (1− t1

t2
)x)− f(x)

t1

≤
t1
t2
f(x+ t2v)

t1
+

(1− t1
t2

)f(x)− f(x)

t1
=
f(x+ t2v)− f(x)

t2
,

so the limit in the definition of f ′(x; v) exists.
The directional derivative f ′(x; v) possesses several interesting properties as well. First,

it is convex in v, and if f is finite in a neighborhood of x, then f ′(x; v) exists. Additionally,
f is differentiable at x if and only if for some g (which is ∇f(x)) and all v ∈ Rn we have
f ′(x; v) = gTv, that is, if and only if f ′(x; v) is a linear function of v.1 For general convex f ,
f ′(x; v) is positively homogeneous in v, meaning that for α ≥ 0, we have f ′(x;αv) = αf ′(x; v)
(replace t by t/α in the defining limit).

The directional derivative f ′(x; v) satisfies the following general formula for convex f :

f ′(x; v) = sup
g∈∂f(x)

gTv. (2)

To see this inequality, note that f ′(x; v) ≥ supg∈∂f(x) g
Tv by the definition of a subgradient:

f(x + tv)− f(x) ≥ tgTv for any t ∈ R and g ∈ ∂f(x), so f ′(x; v) ≥ supg∈∂f(x) g
Tv. For the

other direction, we claim that all affine functions that are below the function v 7→ f ′(x; v)
may be taken to be linear. Specifically, suppose that (g, r) ∈ Rn×R and gTv− r ≤ f ′(x; v)
for all v. Then r ≥ 0, as taking v = 0 gives −r ≤ f ′(x; 0) = 0. By the positive homogeneity
of f ′(x; v), we see that for any t ≥ 0 we have tgTv − r ≤ f ′(x; tv) = tf ′(x; v), and thus we
have

gTv − r

t
≤ f ′(x; v) for all t > 0.

1This is simply the standard definition of differentiability.
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Figure 4: The point x? minimizes f over X (the shown level curves) if and only if
for some g ∈ ∂f(x?), gT (y − x?) ≥ 0 for all y ∈ X. Note that not all subgradients
satisfy this inequality.

Taking t→ +∞ gives that any affine minorizer of f ′(x; v) may be taken to be linear. As any
(closed) convex function can be written as the supremum of its affine minorants, we have

f ′(x; v) = sup
{
gTv | gT∆ ≤ f ′(x; ∆) for all ∆ ∈ Rn

}
.

On the other hand, if gT∆ ≤ f ′(x; ∆) for all ∆ ∈ Rn, then we have gT∆ ≤ f(x+∆)−f(x), so
that g ∈ ∂f(x), and we may as well have taken the preceding supremum only over g ∈ ∂f(x).

2.5 Constrained minimizers of nondifferentiable functions

There is a somewhat more complex version of the result that 0 ∈ ∂f(x) if and only if x min-
imizes f for constrained minimization. Consider finding the minimizer of a subdifferentiable
function f over a (closed) convex set X. Then we have that x? minimizes f if and only if
there exists a subgradient g ∈ ∂f(x?) such that

gT (y − x?) ≥ 0 for all y ∈ X.

See Fig. 4 for an illustration of this condition.
To see this result, first suppose that g ∈ ∂f(x?) satisfies the preceding condition. Then

by definition, f(x) ≥ f(x?)+gT (x−x?) ≥ f(x?) for x ∈ X. The converse is more subtle, and
we show it under the assumption that x? ∈ int dom f , though x? may be on the boundary of
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X. We suppose that f(x) ≥ f(x?) for all x ∈ X. In this case, for any x ∈ X, the directional
derivative

f ′(x?;x− x?) = lim
t↘0

f(x? + t(x− x?))− f(x?)

t
≥ 0,

that is, for any x, the direction ∆ = x − x? pointing into X satisfies f ′(x?; ∆) ≥ 0.
By our characterization of the directional derivative earlier, we know that f ′(x?; ∆) =
supg∈∂f(x?) g

T∆ ≥ 0. Thus, defining the ball Bε = {y + x? ∈ Rn | ‖y‖2 ≤ ε}, we have

inf
x∈X∩Bε

sup
g∈∂f(x?)

gT (x− x?) ≥ 0.

As ∂f(x?) is bounded, we may swap the min and max (see, for example, Exercise 5.25 of
[BV04]), finding that there must exist some g ∈ ∂f(x?) such that

inf
x∈X∩Bε

gT (x− x?) ≥ 0.

But any y ∈ X may be written as t(x−x?) +x? for some t ≥ 0 and x ∈ X ∩Bε, which gives
the result.

For fuller explanations of these inequalities and derivations, see also the books by Hiriart-
Urruty and Lemaréchal [HUL93, HUL01].

3 Calculus of subgradients

In this section we describe rules for constructing subgradients of convex functions. We
will distinguish two levels of detail. In the ‘weak’ calculus of subgradients the goal is to
produce one subgradient, even if more subgradients exist. This is sufficient in practice, since
subgradient, localization, and cutting-plane methods require only a subgradient at any point.

A second and much more difficult task is to describe the complete set of subgradients
∂f(x) as a function of x. We will call this the ‘strong’ calculus of subgradients. It is useful
in theoretical investigations, for example, when describing the precise optimality conditions.

3.1 Nonnegative scaling

For α ≥ 0, ∂(αf)(x) = α∂f(x).

3.2 Sum and integral

Suppose f = f1 + · · ·+ fm, where f1, . . . , fm are convex functions. Then we have

∂f(x) = ∂f1(x) + · · ·+ ∂fm(x).

This property extends to infinite sums, integrals, and expectations (provided they exist).
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3.3 Affine transformations of domain

Suppose f is convex, and let h(x) = f(Ax+ b). Then ∂h(x) = AT∂f(Ax+ b).

3.4 Pointwise maximum

Suppose f is the pointwise maximum of convex functions f1, . . . , fm, i.e.,

f(x) = max
i=1,...,m

fi(x),

where the functions fi are subdifferentiable. We first show how to construct a subgradient
of f at x.

Let k be any index for which fk(x) = f(x), and let g ∈ ∂fk(x). Then g ∈ ∂f(x). In other
words, to find a subgradient of the maximum of functions, we can choose one of the functions
that achieves the maximum at the point, and choose any subgradient of that function at the
point. This follows from

f(z) ≥ fk(z) ≥ fk(x) + gT (z − x) = f(x) + gT (y − x).

More generally, we have

∂f(x) = Co ∪ {∂fi(x) | fi(x) = f(x)},

i.e., the subdifferential of the maximum of functions is the convex hull of the union of
subdifferentials of the ‘active’ functions at x.

Example. Maximum of differentiable functions. Suppose f(x) = maxi=1,...,m fi(x),
where fi are convex and differentiable. Then we have

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}.

At a point x where only one of the functions, say fk, is active, f is differentiable and

has gradient ∇fk(x). At a point x where several of the functions are active, ∂f(x) is

a polyhedron.

Example. `1-norm. The `1-norm

f(x) = ‖x‖1 = |x1|+ · · ·+ |xn|

is a nondifferentiable convex function of x. To find its subgradients, we note that f
can expressed as the maximum of 2n linear functions:

‖x‖1 = max{sTx | si ∈ {−1, 1}},

so we can apply the rules for the subgradient of the maximum. The first step is to
identify an active function sTx, i.e., find an s ∈ {−1,+1}n such that sTx = ‖x‖1. We
can choose si = +1 if xi > 0, and si = −1 if xi < 0. If xi = 0, more than one function

7



is active, and both si = +1, and si = −1 work. The function sTx is differentiable and
has a unique subgradient s. We can therefore take

gi =





+1 xi > 0
−1 xi < 0
−1 or + 1 xi = 0.

The subdifferential is the convex hull of all subgradients that can be generated this
way:

∂f(x) = {g | ‖g‖∞ ≤ 1, gTx = ‖x‖1}.

3.5 Supremum

Next we consider the extension to the supremum over an infinite number of functions, i.e.,
we consider

f(x) = sup
α∈A

fα(x),

where the functions fα are subdifferentiable. We only discuss the weak property.
Suppose the supremum in the definition of f(x) is attained. Let β ∈ A be an index for

which fβ(x) = f(x), and let g ∈ ∂fβ(x). Then g ∈ ∂f(x). If the supremum in the definition
is not attained, the function may or may not be subdifferentiable at x, depending on the
index set A.

Assume however that A is compact (in some metric), and that the function α 7→ fα(x)
is upper semi-continuous for each x. Then

∂f(x) = Co ∪ {∂fα(x) | fα(x) = f(x)}.
Example. Maximum eigenvalue of a symmetric matrix. Let f(x) = λmax(A(x)),
where A(x) = A0 + x1A1 + · · · + xnAn, and Ai ∈ Sm. We can express f as the
pointwise supremum of convex functions,

f(x) = λmax(A(x)) = sup
‖y‖2=1

yTA(x)y.

Here the index set A is A = {y ∈ Rn | ‖y2‖1 ≤ 1}.
Each of the functions fy(x) = yTA(x)y is affine in x for fixed y, as can be easily seen
from

yTA(x)y = yTA0y + x1y
TA1y + · · ·+ xny

TAny,

so it is differentiable with gradient ∇fy(x) = (yTA1y, . . . , y
TAny).

The active functions yTA(x)y are those associated with the eigenvectors corresponding
to the maximum eigenvalue. Hence to find a subgradient, we compute an eigenvector
y with eigenvalue λmax, normalized to have unit norm, and take

g = (yTA1y, y
TA2y, . . . , y

TAny).

The ‘index set’ in this example is {y | ‖y‖ = 1} is a compact set. Therefore

∂f(x) = Co {∇fy | A(x)y = λmax(A(x))y, ‖y‖ = 1} .
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Example. Maximum eigenvalue of a symmetric matrix, revisited. Let f(A) = λmax(A),
where A ∈ Sn, the symmetric n-by-n matrices. Then as above, f(A) = λmax(A) =
sup‖y‖2=1 y

TAy, but we note that yTAy = Tr(AyyT ), so that each of the functions

fy(A) = yTAy is linear in A with gradient ∇fy(A) = yyT . Then using an identical
argument to that above, we find that

∂f(A) = Co
{
yyT | ‖y‖2 = 1, yTAy = λmax(A)

}
= Co

{
yyT | ‖y‖2 = 1, Ay = λmax(A)y

}
,

the convex hull of the outer products of maximum eigenvectors of the matrix A.

3.6 Minimization over some variables

The next subgradient calculus rule concerns functions of the form

f(x) = inf
y
F (x, y)

where F (x, y) is subdifferentiable and jointly convex in x ∈ Rn and y ∈ Rm.
Suppose that the infimum over y in the definition of f(x) is attained on the set Yx ⊂ Rm

(where Yx 6= ∅), so that F (x, y) = f(x) for y ∈ Yx. By definition, a vector g ∈ Rn is a
subgradient of f if and only if

f(x′) ≥ f(x) + gT (x′ − x) = F (x, y) + gT (x′ − x)

for all x′ ∈ Rn and any y ∈ Yx. This is equivalent to

F (x′, y′) ≥ F (x, y) + gT (x′ − x) = F (x, y) +

[
g
0

]T ([
x′

y′

]
−
[
x
y

])

for all (x′, y′) ∈ Rn ×Rm and x, y ∈ Yx. In particular, we have the result that

∂f(x) = {g ∈ Rn | (g, 0) ∈ ∂F (x, y) for some y ∈ Yx} .

That is, there exist g ∈ Rn such that (g, 0) ∈ ∂F (x, y) for some y ∈ Yx, and any such g is a
subgradient of f at x (as long as the infimum is attained and x ∈ int dom f).

3.7 Optimal value function of a convex optimization problem

Suppose f : Rm×Rp → R is defined as the optimal value of a convex optimization problem
in standard form, with z ∈ Rn as optimization variable,

minimize f0(z)
subject to fi(z) ≤ xi, i = 1, . . . ,m

Az = y.
(3)

In other words, f(x, y) = infz F (x, y, z) where

F (x, y, z) =

{
f0(z) fi(z) ≤ xi, i = 1, . . . ,m, Az = y
+∞ otherwise,
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which is jointly convex in x, y, z. Subgradients of f can be related to the dual problem
of (3) as follows.

Suppose we are interested in subdifferentiating f at (x̂, ŷ). We can express the dual
problem of (3) as

maximize g(λ)− xTλ− yTν
subject to λ � 0.

(4)

where

g(λ) = inf
z

(
f0(z) +

m∑

i=1

λifi(z) + νTAz

)
.

Suppose strong duality holds for problems (3) and (4) at x = x̂ and y = ŷ, and that the
dual optimum is attained at λ?, ν? (for example, because Slater’s condition holds). From
the global perturbation inequalities we know that

f(x, y) ≥ f(x̂, ŷ)− λ?T (x− x̂)− ν?T (y − ŷ)

In other words, the dual optimal solution provides a subgradient:

−(λ?, ν?) ∈ ∂f(x̂, ŷ).

4 Quasigradients

If f(x) is quasiconvex, then g is a quasigradient at x0 if

gT (x− x0) ≥ 0⇒ f(x) ≥ f(x0),

Geometrically, g defines a supporting hyperplane to the sublevel set {x | f(x) ≤ f(x0)}.
Note that the set of quasigradients at x0 form a cone.

Example. Linear fractional function. f(x) = aT x+b
cT x+d

. Let cTx0 + d > 0. Then

g = a− f(x0)c is a quasigradient at x0. If cTx+ d > 0, we have

aT (x− x0) ≥ f(x0)cT (x− x0) =⇒ f(x) ≥ f(x0).

Example. Degree of a polynomial. Define f : Rn → R by

f(a) = min{i | ai+2 = · · · = an = 0},

i.e., the degree of the polynomial a1 + a2t + · · · + ant
n−1. Let a 6= 0, and k = f(a),

then g = sign(ak+1)ek+1 is a quasigradient at a

To see this, we note that

gT (b− a) = sign(ak+1)bk+1 − |ak+1| ≥ 0

implies bk+1 6= 0.
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5 Clarke Subdifferential

Now we explore a generalization of the notion of subdifferential that enables the analysis of
non-convex and non-smooth functions through convex analysis. We will introduce Clarke
Subdifferential, which is a natural generalization [Cla90] of the subdifferential set in terms
of convex hulls.

5.1 Locally Lipschitz Functions

As we move beyond convex functions, an important class of functions is locally Lipschitz
functions. Let us recall the definition:

Definition 1. A function f : Rn → R is locally Lipschitz if for any bounded S ⊆ Rn, there
exists a constant L > 0 such that

|f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ S.

A well-known result due to Rademacher states that a locally Lipschitz function is differen-
tiable almost everywhere (see e.g., Theorem 9.60 in [RW09]). In particular, every neighbor-
hood of x contains a point y for which∇f(y) exists. This motivates the following construction
known as the Clarke subdifferential

∂Cf(x) = Co
{
s ∈ Rn : ∃xk → x, ∇f(xk) exists, and ∇f(xk)→ s

}
.

We can check that the absolute value function f(x) = |x| satisfies ∇Cf(0) = [−1, 1]. Like-
wise, the function −f(x) satisfies ∇C(−f(0)) = [−1, 1]. For convex functions, we will see
that the Clarke subdifferential reduces to the ordinary subdifferential defined in Section 1.

5.2 Clarke Directional Derivative

Remarkably, it can be shown that Clarke subdifferentials can by described by support func-
tions even for non-convex functions. In order to show this, we need to generalize the notion
of directional derivatives from Section 2.4. We now define the Clarke directional derivative
of f at x in the direction d as follows

f ◦(x, d)
∆
= lim sup

x′→x, t↘0

f(x′ + td)− f(x′)

t
. (5)

Compared to the usual directional derivative (2), Clarke directional derivative (5) is able to
capture the behavior of the function in a neighborbood of x rather than just along a ray
emanating from x.

We have the following generalization of (2)

f ◦(x, d) = max
s∈∇Cf(x)

sTd,
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5

In particular, we have

@Cf(x) =
�
s 2 Rn : sT d  f�(x, d) for all d 2 Rn

 
,

(12)
and the function d 7! f�(x, d) is finite sublinear for all
x 2 Rn. Additionally, we have f 0(x, d)  f�(x, d) if the
directional derivative of f exists.

We remark that a locally Lipschitz function may not be
directionally differentiable. In other words, the difference
quotient in (3) may not have a limit even though it is bounded
due to the Lipschitzian property. Here, we give an example to
showcase such possibility.

Consider the function

R 3 x 7! f(x) =

⇢
x sin(log( 1

x )) if x > 0,
0 otherwise.

It is clear that f is smooth on R \ {0}. Its derivative
at any x > 0 is given by f 0(x) = sin(log( 1

x )) �
cos(log( 1

x )), which is bounded by 2. Using this and
the structure of f , it can be shown that f is locally
Lipschitz. However, the directional derivative of f at
x̄ = 0 does not exist. In fact, the difference quotient
q(t) = f(t)

t = sin(log( 1
t )) does not converge, as can

be seen by considering the sequence tn = e�(n+ 1
2 )⇡

and computing

q(tn) = sin

✓✓
n +

1

2

◆
⇡

◆
=

⇢
1 if n is even,
�1 otherwise.

It is instructive to compare the two notions of directional
derivatives in (4) and (11) from a geometric point of view. The
former considers the variation of f along a ray emanating from
x in the direction d (i.e., f(x + tkd) vs. f(x) with tk & 0),
while the latter considers the variation of f in the direction
d for points in the neighborhood of x (i.e., f(xk + tkd) vs.
f(xk) with tk & 0 and xk ! x). In particular, the latter is
able to explore the behavior of f in a neighborhood of x rather
than just along a ray emanating from x. Generally, f�(x, d) is
an upper bound on the difference quotient in the neighborhood
of x. As we shall see, such an idea turns out to be very fruitful
when studying the local behavior of non-smooth functions.

Our discussion above reveals a fundamental difference in
the theory of subdifferentiation for convex functions and non-
convex functions. Specifically, in the convex case, subdifferen-
tiation entails linearization of the function at hand; in the non-
convex case, subdifferentiation can be seen as a convexification
process. This allows the use of concepts from convex analysis
to study the subdifferentials of non-convex functions.

Recall that in Section II, we have introudced several proper-
ties that the generalized subdifferential should possess. Now,
let us check whether the Clarke subdifferential possesses those
properties.

– (Smooth function). If f is smooth (i.e., continuously
differentiable) at x, then f�(x, d) = rf(x)T d for all
d 2 Rn and @Cf(x) = {rf(x)}; see [28, Proposition
1.13].

– (Convex function). As mentioned above, convex func-
tions are locally Lipschitz. In this case, the Clarke
subdifferential and Clarke directional derivative take on
particularly simple forms. Indeed, the Clarke subdiffer-
ential coincides with the usual convex subdifferential (2)
due to [29, Theorems 17.2 and 25.6]. In addition, the
directional derivative of a convex function, which always
exists, is equal to the Clarke directional derivative; i.e.,

f�(x, d) = f 0(x, d). (13)

– (Sum rule). The following example demonstrates that
the sum rule @C(f1 + f2) = @Cf1 + @Cf2 does not hold
in general. Consider the function f : R ! R given by
f(x) = max{x, 0}+min{0, x}. Let us compute @Cf1(0),
@Cf2(0), and @Cf(0):

f(x) =f1(x)+f2(x)

@Cf(0) = {1}

f2(x) = min{x,0}

@Cf2(0) = [0,1]@Cf1(0) = [0,1]

f1(x) = max{x,0}

Observe that

@Cf(0) = {1} ( @Cf1(0) + @Cf2(0) = [0, 2].

The failure of the sum rule is one of the obstacles to
computing the Clarke subgradient. Nevertheless, not all
is lost, as we still have the following weaker version of
the sum rule:

@C(f1 + f2) ✓ @Cf1 + @Cf2;

see [28, Proposition 1.12].
– (Tightness). It is known that if f attains a local minimum

at x̄, then 0 2 @Cf(x̄); see [30, Proposition 2.3.2]. By
Fact 3, this is equivalent to f�(x̄, d) � 0 for all d 2 Rn.
However, the Clarke subdifferential may contain sta-
tionary points that are not local minima. For instance,
consider the function R 3 x 7! f(x) = �|x|. It is easy
to see that @Cf(0) = [�1, 1]. It follows that x̄ = 0 is
a stationary point (as 0 2 @Cf(0)). However, the point
x̄ = 0 is clearly not a local minimum (in fact, it is a global
maximum). Moreover, observe that the corresponding
Clarke directional derivatives are f�(0, 1) = f�(0,�1) =
1, which shows that neither d = 1 nor d = �1
is a descent direction according to Clarke’s definition.
However, the ordinary directional derivatives exist and
are given by f 0(0, 1) = f 0(0,�1) = �1. It follows that
both d = 1 and d = �1 are descent directions. One may
argue that the above example is not persuasive enough,
as similar phenomena occur in the smooth case (e.g.,
R 3 x 7! f(x) = �x2). Hence, let us provide another,
perhaps more convincing, example:

Figure 5: Clarke subdifferential of the sum of two non-differentiable functions.
Note that the addition rule does not hold in this example since the function f2(x) =
min{x, 0} is not subdifferentially regular [LSM20].

which shows that the support function of the Clarke subdifferential at any point x evaluated
at d is equal to the Clarke directional derivative at x in the direction d.

Note that the Clarke subdifferential of the sum of two functions is not equal to the sum of
the Clarke subdifferentials (see Figure 5 for an example). Nevertheless, we have the weaker
sum rule

∇C(f1 + f2) ⊆ ∇Cf1 +∇Cf2.

It can be shown that the sum rule holds with equality if the functions are subdifferentially
regular, which are locally Lipschitz functions for which the ordinary directional derivative (2)
and Clarke directional derivative (5) coincide, i.e., f ′(x, d) = f ◦(x, d)∀x, d. It follows that
convex functions are subdifferentially regular. This implies that the Clarke subdifferential
is identical to the ordinary subdifferential for convex functions. Furthermore, smooth func-
tions and maximum of smooth functions, i.e., f = maxi∈{1,...,m} gi, where gi are smooth are
subdifferentially regular. It can also be shown that chain rule also holds for subdifferentially
regular functions [LSM20].

Example. Subdifferential sum rule. Consider the functions f1(x) = max{x, 0},
f2(x) = min{x, 0} and f(x) = f1(x)+f2(x) as shown in Figure 5. It can be verified that

the weak addition rule ∇Cf1 + f2 ⊆ ∇Cf1 +∇Cf2 holds, e.g., ∇Cf1(0) +∇Cf2(0) =

[0, 1] + [0, 1] = [0, 2] ⊇ ∇Cf(0) = {1}. The sum rule does not hold with equality here

since f2(x) = min{x, 0} is not subdifferentially regular. Note that non-smooth concave

functions are not subdifferentially regular in general.

Finally, we have the following result that characterizes local minima and maxima of locally
Lipschitz functions in terms of stationarity in the sense of Clarke subdifferential [RW09].

x is a local minimum or maximum of f(x) =⇒ 0 ∈ ∂Cf(x).

Note that the reverse implication does not hold in general.
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Example. Local minimum and maximum. Consider the non-convex one-dimensional

function f(x) = max{−|x|, x − 1}. It can be verified that x = 0 and x = 1
2 are local

maximum and local minimum respectively. Note that we have 0 ∈ ∂Cf(0) = [−1, 1]

and 0 ∈ ∂Cf(1
2) = [−1, 1].

Example. Stationary points. Consider the function f(x) = min{x, 0}. It can be seen

that ∇Cf(x) = {0} for x > 0, and such points are neither local minima nor local

maxima.
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