
EE365 Stochastic Control / MS&E251 Stochastic Decision Models
Profs. S. Lall, S. Boyd
June 5–6 or June 6–7, 2013

Final exam solutions

This is a 24 hour take-home final. Please turn it in to one of the TAs, at Bytes Cafe in the
Packard building, 24 hours after you pick it up.

You may use any books, notes, or computer programs (e.g., Matlab), but you may not
discuss the exam with anyone until June 9, after everyone has taken the exam. The only
exception is that you can ask us for clarification, via the course staff email address. We’ve
tried pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . . ), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
or plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are
correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab (or other) source code that produces the
result, and the final numerical results or plots. To download Matlab files containing problem
data, you’ll have to type the whole URL given in the problem into your browser; there are
no links on the course web page pointing to these files. To get a file called filename.m, for
example, you would retrieve

http://www.stanford.edu/class/ee365/data_for_final/filename.m

with your browser.

All problems have equal weight.

Be sure to check your email often during the exam, just in case we need to send out an
important announcement.
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1. Optimal investment in a startup. Let vt denote the valuation of a start-up company
at time t, t = 0, 1, . . . (say, in months). If vt = 0, then the company goes bankrupt,
and stops operating; if vt = vmax, then the company is acquired by a larger company,
you receive a payout vmax, and the company stops operating. In each time period
that the company operates, you incur an operating cost co, and you decide whether
to invest more money in the company, depending on its current value. If you decide
to invest, then you invest a fixed amount ci. We model the valuation as a Markov
decision process: the states vt = 0 and vt = vmax are absorbing; if 0 < vt < vmax and
you invest at time t, then

vt+1 =

{
vt + δ with probability p1,

vt − δ with probability 1− p1;

if 0 < vt < vmax and you do not invest at time t, then

vt+1 =

{
vt + δ with probability p0,

vt − δ with probability 1− p0.

Here δ > 0 is a given parameter. The initial valuation v0 is an integer multiple of δ, as
is vmax, so all vt are also integer multiples of δ. With this model, you will eventually
either go bankrupt or be acquired, whether you make investments or not.

(a) Explain how to find an investment policy that maximizes your expected profit.
(Profit is the payout, when and if the company is acquired, minus the total operat-
ing cost, minus the total of any investments made.) And yes, we mean over infinite
time, although any given realization will terminate in bankruptcy or acquisition
in a finite number of periods.

(b) Consider the instance of the problem with

v0 = $10M, vmax = $100M, co = $10K, ci = $400K,
p1 = 0.60, p0 = 0.50, δ = $2M.

What is the optimal investment policy? Report the expected profit, the probabil-
ity that the startup goes bankrupt, and the expected time until the startup goes
bankrupt or is acquired, all under the optimal policy. Use Monte Carlo simulation
with the optimal policy to give a histogram of the profit. Give 10 trajectories of
valuation on the same plot.
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2. Opportunistic wireless transmission. A wireless transmission link consists of a queue
that stores data to be transmitted (sent), and a radio transmitter that transmits (sends)
data to the receiver. We will measure data in (integer) units of some standard (fixed
size) packet. In each time period (called a time slot), we start with qt ≥ 0 packets in
the queue. Then, at ≥ 0 new packets arrive, so we have qt + at packets. After the new
packets arrive, we transmit st packets to the receiver, where 0 ≤ st ≤ qt + at, Thus,
there are qt+1 = qt + at − st packets in the queue at the beginning of the next time
period. We also require that st ≥ qt + at −Q, where Q > 0 is the queue capacity; this
ensures that qt+1 ≤ Q, so we never exceed the queue capacity. We model the packet
arrivals, at, as IID random variables with a known distribution.

We use the queue length, qt, as a measure of how well the wireless link performs,
with smaller values being better than larger values. (One justification for using this
metric is that the average queue length is related to the average queuing delay for a
packet.) In particular, we assess a queue storage cost ct = αqt + βq2t , where α and β
are nonnegative parameters.

In each period we can choose st, the number of packets to send. Sending st packets
requires a transmitter power

pt = ηnt(e
st/γ − 1),

where η and γ are known positive constants, and nt > 0 (which can be a real number,
not just an integer) is the wireless channel noise (plus interference) power during time
slot t. (This formula is derived from the capacity of the wireless channel, which is
proportional to log(1 +ηpt/nt), but you don’t need to know this to solve the problem.)
The noise power nt is modeled as a sequence of IID random variables with a known
distribution. The number of packets to transmit, st, is chosen after the channel noise
power, nt, and the arrivals, at, are revealed. Thus, the number of packets to transmit
is chosen as a function of the queue level, arrivals, and the channel noise power: st =
µ(qt, at, nt). This is called the transmission policy.

The goal is to choose the transmission policy to minimize the sum of the average
transmitter power pt and the average queue cost ct.

(a) Explain how to find the optimal transmission policy. You can assume that no
pathologies occur in the DP iteration.

(b) Find the optimal transmission policy for the problem with data

α = 0.05, β = 0.01, γ = 100, η = 500, Q = 20.

Assume n takes the values (0.1, 1.0, 2.0, 3.0) with probabilities (0.1, 0.4, 0.4, 0.1),
and a takes values (0, 1, 2, 3, 4, 5) with probabilities (0.2, 0.3, 0.2, 0.1, 0.1, 0.1). Re-
port the optimal average power and the optimal average queue cost. Give a time
trace of a sample realization showing the channel noise, nt, the number of trans-
mitted packets, st, and the queue level qt. (Your trace should start after the
closed-loop system has reached statistical equilibrium.)
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3. Appliance scheduling with fluctuating real-time prices. An appliance has C cycles,
c = 1, . . . , C, that must be run, in order, in T ≥ C time periods, t = 0, . . . , T − 1.
A schedule consists of a sequence 0 ≤ t1 < · · · < tC ≤ T − 1, where tc is the time
period in which cycle c is run. Each cycle c uses a (known) amount of energy ec > 0,
c = 1, . . . , C, and, in each period t, there is an energy price pt. The total energy
cost is then J =

∑C
c=1 ecptc . In the lecture on deterministic finite-state control, we

considered an example of this type of problem, where the prices are known ahead of
time. Here, however, we assume that the prices are independent log-normal random
variables, with known means, p̄t, and variances, σ2

t , t = 0, . . . , T − 1. You can think of
p̄t as the predicted energy price (say, from historical data), and pt as the actual realized
real-time energy price.

The following questions pertain to the specific problem instance defined in
appliance_sched_data.m.

(a) Minimum mean cost schedule. Find the schedule that minimizes E J . Give the
optimal value of E J , and show a histogram of J (using Monte Carlo simulation).
Here you do not know the real-time prices; you only know their distributions.

(b) Optimal policy with real-time prices. Now suppose that right before each time
period t, you are told the real-time price pt, and then you can choose whether or
not to run the next cycle in time period t. (If you have already run all cycles,
there is nothing you can do.) Find the optimal policy, µ?. Find the optimal value
of E J , and compare it to the value found in part (a). Give a histogram of J .

You may use Monte Carlo (or simple numerical integration) to evaluate any integrals
that appear in your calculations. For simulations, the following facts will be helpful:
If z ∼ N (µ̃, σ̃2), then w = exp z is log-normal with mean µ and variance σ2 given by

µ = eµ̃+σ̃
2/2, σ2 =

(
eσ̃

2 − 1
)
e2µ̃+σ̃

2

.

We can solve these equations for

µ̃ = log

(
µ2√
µ2 + σ2

)
, σ̃2 = log(1 + σ2/µ2).
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4. Linear quadratic regulator with random actuator availability. Consider the discrete-
time linear dynamical system

xt+1 = Axt +But + wt, t = 0, 1, . . . ,

where xt ∈ Rn and ut ∈ Rm. We assume that the wt ∈ Rn are IID with Ewt = 0 and
Ewtw

T
t = W . The stage cost is (1/2)(xTQx + uTRu), where Q ≥ 0 and R > 0. The

twist in this problem is that, in each period, you are told if the actuator is available for
use. The actuator being unavailable for use in period t is equivalent to requiring that
ut = 0; if the actuator is available for use in period t, then ut is unconstrained. The
actuator availability is random, and modeled as follows. Let at ∈ {0, 1} be IID random
variables with Prob(at = 1) = p. Additionally, assume that the at are independent of
the wt. When at = 1, the actuator is available for use; at = 0 means it is not.

The information pattern is this: In each period t, you know the state xt, and you know
at (i.e., whether or not you can use the actuator), but you do not know wt. When
at = 1, you can choose ut = µav(xt), where µav : Rn → Rm is the policy when the
actuator is available. When at = 0, we have ut = 0.

The goal is to find a µav that minimizes the average stage cost. You may invoke the
ITAP assumption; that is, you can assume that no pathologies occur. (You may not,
however, assume that any miracles occur.)

(a) Explain how to find µav. Give its (parametric) form, and explain how to find its
parameters (possibly in the limit of an iteration).

The information pattern is not one of the ones we have seen in the lectures, so
you will have to come up with your own variation on the traditional DP iteration.
You don’t have to prove that your DP method leads to an optimal policy, or even
derive it; it is enough to clearly describe it.

(b) Carry out your method on the problem instance with data

A =

 0.3 0.6 0.1
0.6 0.2 0.2
0.5 0.5 0

 , B =

 0.6
0.2
0.1

 , W = I,

Q = I, R = 1, and p = 0.2 (so n = 3 and m = 1). Give the optimal µav, and the
optimal average stage cost. Perform a Monte Carlo simulation of the closed-loop
system. Plot at, ‖xt‖2, and ut versus t, for some range of t after the closed-loop
system has come to statistical equilibrium, and estimate the average stage cost
from your simulation. (You might start with x0 = 0, simulate for 100 time steps,
then plot the next 100 time steps. To estimate the average stage cost, you can
compute the average cost over 10000 steps.)
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5. Absorbing Markov chains. This problem concerns the specific Markov chain x0, x1, . . .
with transition matrix

P =



0.1 0 0.2 0.7 0 0 0 0 0 0
0 0.5 0 0 0.4 0 0 0 0.1 0

0.3 0 0.3 0.4 0 0 0 0 0 0
0.6 0 0.1 0.3 0 0 0 0 0 0
0 0.4 0 0 0.1 0 0 0 0.5 0

0.2 0.2 0 0 0 0.2 0.2 0.2 0 0
0 0 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0 0.3 0 0 0.3 0 0 0 0.4 0

0.4 0 0 0 0 0.6 0 0 0 0


.

The matrix P is defined in absorbing_markov_data.m.

(a) Find the communicating classes. For each class, give a list of the states in the
class, and say whether the class is transient or closed.

(b) Find limt→∞ P t. Use the symbol ‘?’ to denote an entry that does not converge.

(c) Find
∑∞

t=0 P
t.

(d) Suppose the initial state is x0 = 1. Find the steady state distribution limt→∞ πt,
where πt is the distribution of xt.

(e) Let A be the closed class containing state 1, and let B be the closed class con-
taining state 2. The state is eventually absorbed in one of these classes. For each
state i, find the probability that the state is absorbed in class A if x0 = i.

(f) Suppose we are charged a cost of 10 if the state is absorbed in class A, and a cost
of 20 if the state is absorbed in class B. For each state i, find the expected cost
at absorption if x0 = i.
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