Stanford | ENGINEERING Computational Imaging
Electrical Engineering EE 367 / CS 448|

Problem Session 3

Topics

« Image Filtering
« Spatial domain vs. Fourier domain
« Low pass and high pass

« Deconvolution and Inverse Filtering
« Standard
« Wiener Deconvolution

e Gradient Descent

Task 1: Image filtering

Primal domain vs. Fourier domain

* Primal: I(x,y) - I(x,y) * PSF(x,y)

Point spread function

* Fourier domain: f(a)x, a)y) - f(a)x, a)y) X OTF (wy, wy)

Optical transfer function

Task 1: Image Filtering

* Helpful functions: scipy.signal.convolve2d, pypher.psf2otf,
numpy.fft.fft2, numpy.fft.1£f£ft2

* Normalize the filter so it sumsto 1

* You can implement high pass filtering as:

~

]_I*PSFLP]X(l—OTFLp]

Primal Domain Fourier Domain

Task 1: Image filtering

Example of results:
* Primal and dual results look similar

Spatial blur with 0=15 Fourier blur with 0=15

Why are we seeing

Task 1: Image filtering this behavior?

Example of results

Lowpass filter runtime comparison

Bl spatial domain
B Fourier domain

Spatial blur with sigma = 10 Fourier blur with sigma = 10 OTF with sigma = 10

1015

1071 -

: -: I I I l
0.1 1 10 0.1 1 10

sigma

Runtimes in seconds

Task 2: Deconvolution and Inverse Filtering

n{xy)
h(xy) O‘ h’(xy)
f(xy) H(@s, @) o) |19 99 | piy
Degradation Restoration

What is the best h’ (or H’)?

Simply using H = 1/H will (usually) amplify noise and destroy the
Image.

Task 2: Deconvolution and Inverse Filtering

For HW:
* First, blur the image with a Gaussian kernel (primal or Fourier domain)
* Add random noise

* Reconstruct the image by
1. Dividing by the blur kernel (OTF) in Fourier domain (simple inverse filtering)

2. Wiener deconvolution, which is almost the same as inverse filtering, but uses
a damping factor in the Fourier domain that depends on the noise

Average pixel value of

1 |H|? SNR = I noisy image

H =—.
H (|H[*+ 1/SNR) Onoise

Task 2: Deconvolution and Inverse Filtering

Frequency response of a Wiener filter

5 = (Gaussian
--1/G
4 e k=0.01
m— k=0.05
o 1 |G|2 53 — k=0.1
— . -
G (|G|*+k) .
1

-100 -75 50 -25 00 25 50 7.5 100
0

Higher Noise — Lower SNR — More damping — less noise amplification

Task 2: Deconvolution and Inverse Filtering

 The Wiener filter maximizes the probability of the reconstructed
signal (S) given the observations (Y).

p(S|Y) x p(Y[S)p(S)

—1
— . 2 — 2
logp(Y|S) =—||HO S -Y]| logp(S) SNR IS]|

Task 2: Deconvolution and Inverse Filtering

Calculate the mean squared error (MSE) and the peak signal-to-noise
ratio (PSNR):

m n

1 2

MSE:_ZZ | H N

mn e orlgmal(l J) restored (i])]
i=1j=

max (1, i inqr)?
PSNR = 1010g10< (orlgmal))

MSE

Task 2: Deconvolution and Inverse Filtering

Example of results

Inverse filtering Wiener deconvolution

Blurred image with noise, o = 0.001 =) : b Image after Wiener deconvolution, PSNR = 26.6101 dB

50

311 .8 Rl

5358 58 m o8 8 21 {12 4 e 5 o sme e dini 100

i B S 150

‘ Pt
FETEEE B3k E R Ean 260

350

400
450

100 200 300 400 500

Task 3: Gradient Descent

* A general algorithm for solving an optimization problem of the form
minimize f(x)
h
* |dea: Move in the direction of the negative gradient

 the direction in which the function is most steeply decreasing
 Alpha (a) is the step size (or the “learning rate”)

P) oV f ()

Task 3: Gradient Descent

* Apply to the equation

1
minimize = ||Az — bl[5
4 2

* A:Linear operator representing the image formation model (or
forward model)

* b: Observed measurements (noisy image)
* X: Desired reconstruction variable

Task 3: Gradient Descent

1 1
§wTATA:1; — 2T ATh + 5bTb

1)
Residual 5 HA;U — bHé

Vo |5 lAz - bl|5| =|A"T Az — AT'p| Gradient

grad_12(A, x, b):
TODO:

@ = matrix multiply

f residual _12(A, x, b):
0.5 x np.linalg.norm(A @ X - b)*%2

Vanilla Gradient Descent
p Y 2B oV f(2M)

Task 3: Stochastic Gradient Descent

* Generalcase: .(k+1) ,_ ,.(k) _ ag(zF) Elg(z)] = V f(z)

* |n the context of least squares, can express the objective as a sum of
scalar residuals: n

| Az — bl =) (afx—b;)°

. i=1 :
* Choosing a subset of rows of A and b === descending on a subset of
these residuals
* The number of rows is the batch size.

 Use np.random.randint to select random indices for the A matrix

Ta S k 3 : G ra d i e nt D e Sce nt Pass functions as arguments

FunCtionS can be passed run_gd(A, b, step_size=le-4, num_iters=1500, grad_fn=grad_12, residual=residual_12):
dS arguments to other
functions

Multiple return values
with: return a, b

Unpacking with:

a, b = func/()

time.time () /

Multiple return values

Task 3: Gradient Descent

residual

105 d
103 4
mm— S\/D
| - GD
| -—— SGD B=10
—— SGD B=100
10! - —— SGD B=1000
1071 +
0 200 400 600 800 1000 1200 1400
iteration

Use full A matrix, not subsampled A, to
compute residual.

residual

—— GD
—— SGD B=10
—— SGD B=100
10° i
—— SGD B=1000
103 |
101 |
10—1 |
101 100 101 102 103 104

time (ms)

Note: Exact runtimes and order of
convergence in wall clock time may
vary!

Have a nice weekend!

