Great Ideas in Computational Photography HDR Imaging, Tone Mapping, Coded Apertures & Imaging

EE367/CS448I: Computational Imaging

stanford.edu/class/ee367

Lecture 6

Gordon Wetzstein Stanford University

Computational Photography on your Phone

- High-dynamic-range (HDR) imaging
- Tone mapping
- Burst photography

HDR contrast reduction (scaling)

HDR local tone mapping

High Dynamic Range Imaging (HDRI)

Problems:

- Sensors have a limited full well capacity, pixels saturate for higher electron count
- Non-zero noise floor and ADC quantization further reduce precision

Terminology:

- dynamic range: ratio between brightest and darkest value
- quantization (i.e., precision) within that range is equally important
 - → from 8 bits (256 values) to 32 bits floating point

HDRI – Overview

- 1. estimate camera response curve
- 2. capture multiple low dynamic range (LDR) exposures
- 3. fuse LDR images into 32 bit HDR image
- 4. possibly convert to absolute radiance (global scaling)

HDRI – Estimating the Response Curve

- not required when working with linear RAW images
- · easiest option: use calibration chart

HDRI – Estimating the Response Curve

- not required when working with linear RAW images
- · easiest option: use calibration chart

linear RAW known reflectance 128 196 255 pixel value

HDRI – Estimating the Response Curve

- not required when working with linear RAW images
- easiest option: use calibration chart

HDRI – Linearizing LDR Exposures

· capture exposure, apply lookup table

- start with LDR image sequence I_i (only exposure time t_i changes)
- individual exposure is: $I_i = f(t_i X)$, f is camera response function

• undo the camera response: $I_{lin_i} = f^{-1}(I_i)$

e.g., gamma function
$$f(I) = I^{1/\gamma} \rightarrow f^{-1}(I) = I^{\gamma}$$

- compute a weight (confidence) that a pixel is well-exposed
 - → (close to) saturated pixel = not confident, pixel in center of

dynamic range = confident!
$$w_{ij} = \exp\left(-4\frac{\left(I_{lin_{ij}} - 0.5\right)^2}{0.5^2}\right)$$
or mean pixel value, e.g. 127.5 if I in [0, 255]

compute per-color-channel-per-LDR-pixel weights

$$w_{ij} = \exp\left(-4\frac{\left(I_{lin_{ij}} - 0.5\right)^2}{0.5^2}\right)$$

define least-squares objective function in log-space → perceptually minimize $O = \sum_{i} w_i \left(\log(I_{lin_i}) - \log(t_i X) \right)^2$ linear:

$$\lim_{X} \operatorname{Imminze} O = \sum_{i} w_{i} \left(\log \left(I_{lin_{i}} \right) - \log \left(I_{i} X \right) \right)$$

 $\frac{\partial O}{\partial \log(X)} = -2\sum_{i} w_{i} \left(\log(I_{lin_{i}}) - \log(t_{i}) - \log(X) \right) = 0$

gives:
$$\widehat{X} = \exp\left(\frac{\sum_{i} w_{i} \left(\log(I_{lin_{i}}) - \log(t_{i})\right)}{\sum_{i} w_{i}}\right)$$

equate gradient to zero:

define least-squares objective function in log-space → perceptually minimize $O = \sum_{i} w_i \left(\log(I_{lin_i}) - \log(t_i X) \right)^2$ linear:

$$\lim_{X} \operatorname{Imminize} \quad O = \sum_{i} w_{i} \left(\log \left(I_{lin_{i}} \right) - \log \left(I_{i} X \right) \right)$$

$$\frac{\partial O}{\partial \log(X)} = -2\sum_{i} w_{i} \left(\log(I_{lin_{i}}) - \log(t_{i}) - \log(X) \right) = 0$$
gives:
$$\widehat{X} = \exp\left(\frac{\sum_{i} w_{i} \left(\log(I_{lin_{i}}) - \log(t_{i}) \right)}{\sum_{i} w_{i}} \right)$$

equate gradient to zero:

- LDR to HDR only gives relative radiance
- scale by reference radiance to get absolute!

HDRI – Tone Mapping

• Problem: how to display a 32 bit HDR image on an 8 bit LDR display?

 Solution: tone mapping, i.e., "scale" into luminance range of display (or 0-255), while preserving high-contrast image details

Saturation

- sun overexposed
- foreground too dark

Tone Mapping w/ Simple Gamma

• gamma correction:

$$I = I^{\gamma}$$

· colors are washed out

Tone Mapping w/ Simple Gamma

- gamma in intensity only!
- intensity details lost

[Durand and Dorsey, 2002]

Tone Mapping w/ Bilateral Filter

Input HDR image

Intensity

Fast Bilateral Filter

Detail

Output

Large scale

Detail

Color

Tone Mapping w/ Bilateral Filter

Tone Mapping w/ Local Laplacian Filters

- Many many more and more complicated tone mapping algorithms out there (too many to discuss here)
- Local Laplacian Filters is one of the state-of-the-art approaches

(a) input HDR image tone-mapped with a simple gamma curve (details are compressed)

(b) our pyramid-based tone mapping, set to preserve details without increasing them

(c) our pyramid-based tone mapping, set strongly enhance the contrast of details

Burst Denoising for Low-light Imaging

- Problem: too much (Poisson) noise in low-light conditions
- Solution: capture, align, and average multiple short exposures

Guest lecture by Dr. Orly Liba from Google

Coded (Aperture) Computational Imaging

Camera Aperture Revisited

Coded Aperture Changes PSF

out-of-focus, circular aperture

out-of-focus, coded aperture

Coded Aperture Changes PSF

Coded (Aperture) Imaging

Applications of *Coded Aperture Imaging*:

- Extended depth of field
- Monocular depth estimation

Applications of *Coded Imaging* in General:

- Motion deblurring
- High-speed, hyperspectral, light field, single-pixel imaging ...

Coded (Aperture) Imaging

Applications of *Coded Aperture Imaging*:

- · Extended depth of field
- Monocular depth estimation

Applications of *Coded Imaging* in General:

- Motion deblurring
- High-speed, hyperspectral, light field, single-pixel imaging ...

What makes Defocus Deblurring Hard?

What makes Defocus Deblurring Hard?

Extended Depth of Field

- 1. Problem: depth-dependent PSF scale (depth unknown)
 - engineer PSF to be depth invariant
 - resulting shift-invariant deconvolution is much easier!

- 2. Problem: circular / Airy PSF is usually not invertible: ill-posed problem
 - engineer PSF to be broadband (flat Fourier magnitudes)
 - resulting inverse problem becomes well-posed

Extended Depth of Field

Two general approaches for engineering depth-invariant PSFs:

 move sensor / object (known as focal sweep) 2. <u>change optics</u> (e.g., wavefront coding)

Extended Depth of Field – Focal Sweep

captured focal sweep always blurry!

conventional photo (small DOF)

EDOF image

conventional photo (large DOF, noisy)

Extended Depth of Field – Focal Sweep

 noise characteristics are main benefit of EDOF

 may change for different sensor noise characteristics

SNR should be evaluation metric!

EDOF image

conventional photo (large DOF, noisy)

Coded (Aperture) Imaging

Applications of *Coded Aperture Imaging*:

- Extended depth of field
- Monocular depth estimation

Applications of *Coded Imaging* in General:

- Motion deblurring
- High-speed, hyperspectral, light field, single-pixel imaging ...

Monocular Depth Estimation

Problem: 3D/depth cameras are hard

Solution: a single image contains a lot of depth cues – learn to use them for depth estimation (like humans)

[Godard et al., 2017]

Coded Apertures for Depth Estimation

Coded Apertures for Depth Estimation

[lkoma et al., 2021] **0.0 μm 2.1 μm**

Coded Apertures for Depth Estimation

 PSF engineering can make depth estimation more robust by encoding low-level depth information in the PSF (rather than just pictorial cues)

[lkoma et al., 2021]

Coded Apertures in Astronomy

- some wavelengths are difficult to focus
- → no "lenses" available
- coded apertures for x-rays and gamma rays

ESA SPI / INTEGRAL

Coded Apertures in Microscopy

for low-light, coding of refraction is better (less light loss)

e.g., rotating double helix PSF Stanford Moerner lab

Coded (Aperture) Imaging

Applications of *Coded Aperture Imaging*:

- Extended depth of field
- Monocular depth estimation

Applications of *Coded Imaging* in General:

- Motion deblurring
- High-speed, hyperspectral, light field, single-pixel imaging ...

Motion Blur and Deblurring

- Problem: objects that move throughout exposure time will be blurred
- Motion deblurring is hard because:
 - Motion PSF may be unknown and different for different object
 - 2. Motion PSF is difficult to invert

Deblurred image

Motion Deblurring w/ Flutter Shutter

engineer motion PSF (coding exposure time) so it becomes invertible!

[Raskar et al. 2006]

Input Photo

Deblurred Result

Traditional Camera: Shutter is OPEN

Flutter Shutter Camera:

Shutter is OPEN & CLOSED

Inspired by Harold "Doc" Edgerton

Blurring

_

Convolution

Traditional Camera: Box Filter

Flutter Shutter: Coded Filter

License Plate Retrieval

License Plate Retrieval

Coded (Aperture) Imaging

Applications of *Coded Aperture Imaging*:

- Extended depth of field
- Monocular depth estimation

Applications of *Coded Imaging* in General:

- Motion deblurring
- High-speed, hyperspectral, light field, single-pixel imaging ...

Coded Imaging with Neural Sensors

Measurements Coded Reconstructions

References and Further Reading

HDR

- Mann, Picard "On Being 'Undigital' with Digital Cameras: Extending Dynamic Range by Combining Differently Exposed Pictures", IS&T 1995
- Debevec, Malik, "Recovering High Dynamic Range Radiance Maps from Photographs", SIGGRAPH 1997
- · Reinhard, Ward, Pattanaik, Debevec (2005). High dynamic range imaging: acquisition, display, and image-based lighting. Elsevier/Morgan Kaufmann

Tone Mapping

- Durand, Dorsey, "Fast Bilateral Filtering for the Display of High Dynamic Range Images", ACM SIGGRAPH 2002
- Paris, Hasinoff, Kautz, "Local Laplacian Filters: Edge-aware Image Processing with a Laplacian Pyramid", ACM SIGGRAPH 2011

Burst Photography/Denoising

- Hasinoff, Sharlet, Geiss, Adams, Barron, Kainz, Chen, Levoy "Burst photography for high dynamic range and low-light imaging on mobile cameras", SIGGRAPH Asia 2016
- Liba et al.. "Handheld Mobile Photography in Very Low Light". ACM SIGGRAPH Asia 2019

Extended Depth of Field

- E. Dowski, W. Cathey, "Extended depth of field through wave-front coding", Appl. Opt. 34, 11, 1995
- H. Nagahara, S. Kuthirummal, C. Zhou, S. Nayar, "Flexible Depth of Field Photography", ECCV 2008
- Levin, Hasinoff, Green, Durand, Freeman, "4D Frequency Analysis of Computational Cameras for Depth of Field Extension", ACM SIGGRAPH 2009
- O. Cossairt, S. Nayar "Spectral Focal Sweep for Extending Depth of Field", ICCP 2010
- O. Cossairt, C. Zhou, S. Nayar, "Diffusion-Coded Photography", ACM SIGGRAPH 2012

Depth Estimation

- C. Godard, O. Aodha, G. Bostrow, "Unsupervised Monocular Depth Estimation with Left-Right Consistency", CVPR 2017
- J. Chang, G. Wetzstein, "Deep optics for monocular depth estimation and 3d object detection", ICCV 2019
- . H. Ikoma, C. Nguyen, C. Metzler, Y. Peng, G. Wetzstein, "Depth from Defocus with Learned Optics for Imaging and Occlusion-aware Depth Estimation", ICCP 2021

Motion Deblurring

- Q. Shan, J. Jia, A. Agrawal, "High-quality Motion Deblurring from a Single Image", ACM SIGGRAPH 2008
- R. Raskar, A. Agrawal, J. Tumblin "Coded Exposure Photography: Motion Deblurring using Fluttered Shutter", ACM SIGGRAPH 2006
- Levin, Sand, Cho, Durand, Freeman, "Motion-Invariant Photography", ACM SIGGRAPH 2008
- Bando, Holtzman, Raskar, "Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis", ACM Trans. Graph. 2013

Other

• J. Martel, L. Mueller, S. Carey, P. Dudek, G. Wetzstein, "Neural Sensors: Learning Pixel Exposures with Programmable Sensors", IEEE T. PAMI 2020