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Computational Photography on your Phone

- High-dynamic-range (HDR) imaging
« Tone mapping

« Burst photography
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High Dynamic Range Imaging (HDRI)

Problems: 425um 6.5um
. . & &
« Sensors have a limited full well capacity, 88, 6&’%3022
gzo% og% r.')g)
H : [ o)
pixels saturate for higher electron count ;g%og 0%%00
« Non-zero noise floor and ADC quantization . 450008

(~3.8X more e)

further reduce precision

Terminology:

dynamic range: ratio between brightest and darkest value
quantization (i.e., precision) within that range is equally important

—> from 8 bits (256 values) to 32 bits floating point

80,000e
(~6.3X more &)

https://www.princetoninstrumen
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HDRI — Overview

estimate camera response curve
capture multiple low dynamic range (LDR) exposures
fuse LDR images into 32 bit HDR image

possibly convert to absolute radiance (global scaling)



HDRI — Estimating the Response Curve

* not required when working with linear RAW images

* easiest option: use calibration chart




HDRI — Estimating the Response Curve

* not required when working with linear RAW images

» easiest option: use calibration chart

known reflectance
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HDRI — Estimating the Response Curve

* not required when working with linear RAW images

» easiest option: use calibration chart

known reflectance

e.g. JPEG
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HDRI — Linearizing LDR Exposures

« capture exposure, apply lookup table

e.g. JPEG
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HDRI — Merging LDR Exposures

« start with LDR image sequence /;(only exposure time £ changes)

* individual exposure is: [, :f(z.X), fis camera response function

i \%7 ‘V \);Qﬂ

Image from Debevec & Malik, 1997



HDRI — Merging LDR Exposures

- undo the camera response: I, = f'(I,)

e.g., gamma function f(I)=1"" — f'(I)=

Image from Debevec & Malik, 1997



HDRI — Merging LDR Exposures

« compute a weight (confidence) that a pixel is well-exposed
- (close to) saturated pixel = not confident, pixel in center of

dynamic range = confident! (1

W\, ormean pixel value,

Wi =€XPp| = 052 & e.g.127.5if1in [0, 255]




HDRI — Merging LDR Exposures

« compute per-color-channel-per-LDR-pixel weights [
w,. = exp




HDRI — Merging LDR Exposures

define least-squares objective function in log-space = perceptually

linear: mmlmlze O—zw(]og( ) log(tX))

equate gradient to zero:

aloagO(X) =23, w(log(1;, )~ log(1,) - log(X)) =0

X exp[zfiwi(log(lﬁnz)_log(ti))]

gives: X = Eiwi




HDRI — Merging LDR Exposures

define least-squares objective function in log-space > perceptually

linear: mmlmlze O—zw(]og( ) log(tX))

equate gradient to zero:

aloagO(X) =23, w(log(1;, )~ log(r,) - log(X)) =0

gives: X = exp(Eiwi(loggli;;/)_log(ti))]




HDRI — Relative v Absolute Radiance

LDR to HDR only gives relative radiance

scale by reference radiance to get absolute!

Image from Debevec & Malik, 1997



HDRI — Tone Mapping

« Problem: how to display a 32 bit HDR image on an 8 bit LDR display?

« Solution: tone mapping, i.e., “scale” into luminance range of display (or

0-255), while preserving high-contrast image details



sun overexposed

foreground too dark

Saturation

[Durand and Dorsey, 2002]



Tone Mapping w/ Simple Gamma

gamma correction:
=1

colors are washed out

[Durand and Dorsey, 2002]



Tone Mapping w/ Simple Gamma

gamma in intensity
only!

intensity details lost
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Tone Mapping w/ Bilateral Filter

Input HDR image

Intensity Large scale (base layer)

Reduce
contrast

Fast
Bilateral
Filter

Preserve!

Color

Output

Large scale

Detail

Color

[Durand and Dorsey, 2002]



Tone Mapping w/ Bilateral Filter

[Durand et al., 2002]



Tone Mapping w/ Local Laplacian Filters

 Many many more and more complicated tone mapping algorithms out
there (too many to discuss here)

» Local Laplacian Filters is one of the state-of-the-art approaches

(a) input HDR image tone-mapped with a simple (b) our pyramid-based tone mapping, set to pre- (c) our pyramid-based tone mapping, set to
gamma curve (details are compressed) serve details without increasing them strongly enhance the contrast of details

[Paris et al., 2011]



Burst Denoising for Low-light Imaging

* Problem: too much (Poisson) noise in low-light conditions

« Solution: capture, align, and average multiple short exposures

Guest lecture by Dr.

Orly Liba from Google



Coded (Aperture) Computational Imaging



Camera Aperture Revisited

A camera aperture has (at least) two parts that can be “coded”:

1. aperture stop — attenuating pattern

2. refractive elements (lens or compound lens system)

000
008

1. attenuating coded aperture

2. refractive or
diffractive coded
aperture or lens
system




[Veeraragharavan et al. 2007]

Coded Aperture Changes PSF
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Coded Aperture Changes PSF

'16 Canon EF 100 mm 1:1.28 Lens,
Mask Canon SLR Rebel ‘)-(T camera

=

|

-

g
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in-focus photo out-of-focus, circular aperture out-of-focus, coded aperture



Coded (Aperture) Imaging

Applications of Coded Aperture Imaging:
» Extended depth of field

 Monocular depth estimation

Applications of Coded Imaging in General:

« Motion deblurring

« High-speed, hyperspectral, light field, single-pixel imaging ...



Coded (Aperture) Imaging

Applications of Coded Aperture Imaging:
» Extended depth of field



What makes Defocus Deblurring Hard?

out of focus blur ( ]

1
o |<—|—>|_
circle of confusion

focal plane




What makes Defocus Deblurring Hard?

1. Depth-dependent PSF scale (depth unknown)
2. PSF is usually not invertible i’

1
o |<—|—>|_
circle of confusion

focal plane




Extended Depth of Field

1. Problem: depth-dependent PSF scale (depth unknown)

* engineer PSF to be depth invariant

* resulting shift-invariant deconvolution is much easier!

2. Problem: circular / Airy PSF is usually not invertible: ill-posed problem
» engineer PSF to be broadband (flat Fourier magnitudes)

* resulting inverse problem becomes well-posed



Extended Depth of Field

» Two general approaches for engineering depth-invariant PSFs:

1. move sensor / object 2. change optics
(known as focal sweep) (e.g., wavefront coding)
@ fo
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Focal Sweep

Extended Depth of Field
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[Nagahara et al. 2008]

noise characteristics are main
benefit of EDOF

may change for different sensor

noise characteristics

SNR should be
evaluation metric!

conventional photo

EDOF image

(large DOF, noisy)



Coded (Aperture) Imaging

Applications of Coded Aperture Imaging:

 Monocular depth estimation



Monocular Depth Estimation

[Godard et al., 2017]

Problem: 3D/depth

cameras are hard

Solution: a single image
contains a lot of depth

cues — learn to use them
for depth estimation (like

humans)



[Chang and Wetzstein, 2019]

Coded Apertures for Depth Estimation

_ phase, amplitude mask | thin lens _
point sources at I 1 sensor  cross-section
1

different depths free space propagation [ T2’

free space propagation

Uout () ;

Usensor (z”) PSF(z)

: R

PSFs | intensity
atdepth: 0.50m 0.57m 0.65m 0.77m 094 m 1.21m 1.68 m 278 m

defocus




Coded Apertures for Depth Estimation

[lkoma et al., 2021] 0.0 ym 2.1 um
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Coded Apertures in Astronomy |

* some wavelengths are difficult to focus
- no “lenses” available

* coded apertures for x-rays and gamma rays




Coded Apertures in Microscopy

« for low-light, coding of refraction is better (less light loss)
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Coded (Aperture) Imaging

Applications of Coded Imaging in General:

« Motion deblurring



[Shan et al. 2008]

Motion Blur and Deblurring

Problem: objects that move throughout exposure time will be blurred
Motion deblurring is hard because:
1. Motion PSF may be unknown and different for different object

2. Motion PSF is difficult to invert

Blurred input image Deblurred image



[Raskar et al. 2006]

Motion Deblurring w/ Flutter Shutter

engineer motion PSF (coding exposure time) so it becomes invertible!

Input Photo Deblurred Result



[Raskar et al. 2006]

Traditional Camera:

Shutter is OPEN



[Raskar et al. 2006]

Flutter Shutter Camera:

Shutter is OPEN &
CLOSED
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[Raskar et al. 2006]

[900z2 ‘|e 10 Jevsey]



[Raskar et al. 2006]




[Raskar et al. 2006]

N

spatial convolution

¥

sinc function

Blurring

Convolution

Fourier magnitudes

Traditional Camera: Box Filter



[Raskar et al. 2006]

Wiiiis
JUI UL

spatial convolution

¥

Preserves High Frequencies!!!

Fourier magnitudes

Flutter Shutter: Coded Filter






[Raskar et al. 2006]

License Plate Retrieval




[Raskar et al. 2006]

License Plate Retrieval




Coded (Aperture) Imaging

Applications of Coded Imaging in General:

« High-speed, hyperspectral, light field, single-pixel imaging ...



Coded Imaging with Neural Sensors

ETS:

| Neural Network

Error Backpropagation

Coded
Reconstructions Measurements

[Martel et al., 2020]
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