
1	

	

Tutorial on OpenCV for Android Setup

EE368/CS232 Digital Image Processing, Spring 2015

Linux Version
For Motorola Droid phones

Introduction
In this tutorial, we will learn how to install OpenCV for Android on your computer and how to
build Android applications using OpenCV functions. The tutorial is split into two parts. In the
first part, we will explain how to download and install the OpenCV library onto your computer.
Then, in the second part, we will explain how to build an application that draws different types
of feature keypoints directly in the video viewfinder of the Android device, as shown in Figure 1.

Figure 1. Android application drawing MSER feature keypoints on a viewfinder frame.

Demo video: http://ee368.stanford.edu/Android

Please note that this tutorial assumes that you have successfully completed the first Android
tutorial for EE368/CS232, “Tutorial on Basic Android Setup”, which explains how to install the
Android SDK and the Eclipse IDE. You will need to have already installed all the software tools
mentioned in that other tutorial before moving onto this tutorial.

Estimated time to complete this tutorial: 2 hours

2	

	

Part I: Installing OpenCV for Android

Downloading and Installing CMake

Please download and install version 2.8.10 (or higher) of CMake. Earlier versions are not
recommended for the subsequent process of building OpenCV.

1. Download the tar-gz file for “Binary distributions” for “Linux i386” from this page:

http://www.cmake.org/cmake/resources/software.html

2. Unzip the downloaded file:
tar -xvf cmake-2.8.10.2-Linux-i386.tar.gz

3. Copy the “bin” contents:

sudo cp -r cmake-2.8.10.2-Linux-i386/bin /usr/

Note: This assumes the /usr/bin/ folder already exists on your system.

4. Copy the “share” contents:
sudo cp -r cmake-2.8.10.2-Linux-i386/share /usr/

Note: This assumes the /usr/share/ folder already exists on your system.

5. Verify that CMake version.
cmake --version

The output should be: cmake version 2.8.10.2

Downloading and Installing Android NDK

The Android NDK enables us to compile and run native C/C++ code on Android. We will
use a version of the NDK that supports STL and exceptions.

1. Download “android-ndk-r4-linux-x86-crystax-4.tar.bz2” from this website:

http://www.crystax.net/android/ndk-r4.php

2. Unzip the downloaded file to the your Android directory, for example:
cd /home/yourname/Android
tar -xvf android-ndk-r4-linux-x86-crystax-4.tar.bz2

3. If you have a 64-bit OS, you must install some libraries to run the 32-bit NDK:

sudo apt-get install ia32-libs

Downloading and Installing Java

We need to determine if Java is already installed on the machine.

1. Check if “java” is installed:

which java

 If installed, the installation path should be printed.

2. If “java” is not installed, please visit this site to perform the installation:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Downloading and Installing Apache Ant

3	

	

Please download and install version 1.8.4 (or higher) of Apache Ant. Earlier versions are not
recommended for the subsequent process of building Android applications that use OpenCV.

1. Download the tar-gz file from this website:

http://ant.apache.org/bindownload.cgi

2. Unzip the downloaded file:
cd /home/yourname/Android
tar -xvf apache-ant-1.8.4-bin.tar.gz

3. Add the following lines to the shell startup file, for example “.bashrc”:

export $ANT_HOME=/home/yourname/Android/apache-ant-1.8.4
export PATH=$ANT_HOME/bin:$PATH

Be sure to “source .bashrc” for the changes to take effect.

4. Verify the Ant version:
ant -version

The output should be like: Apache Ant(TM) version 1.8.4 compiled on <Date>

Downloading and Installing SWIG

We need to determine if SWIG is already installed on the machine.

1. Check if “swig” is installed:

which swig

 If installed, the installation path should be printed.

2. If “swig” is not installed, download from:
http://prdownloads.sourceforge.net/swig/swig-2.0.9.tar.gz

3. Install SWIG:
tar -xvf swig-2.0.9.tar.gz
cd swig-2.0.9
./configure
sudo make
sudo make install

Downloading and Installing OpenCV

Now, we are ready to download and install the OpenCV library.

1. Download the OpenCV package from this location:
http://ee368.stanford.edu/Android/OpenCV/opencv.tar.gz

2. Make sure important programs are in the PATH.
a. Add the following lines to the shell startup file, for example “.bashrc”:

export NDK=/home/yourname/Android/android-ndk-r4-crystax
export SDK=/home/yourname/Android/android-sdk-linux
export ANT_HOME=/home/yourname/Android/apache-ant-1.8.3
export JAVA_HOME=/home/yourname/jdk1.7.0_03
export OPCV=/home/yourname/Android/opencv

4	

	

export PATH=$NDK:$SDK/tools:$SDK/platform-tools:$ANT_HOME/bin:
 $JAVA_HOME/bin:$PATH

Be sure to change the locations above to match the folders where you placed Android
NDK, Android SDK, Ant, OpenCV, and Java JDK. Remember to “source .bashrc”
for the changes to take effect. You can check that the desired environment variables
are set correctly using “printenv”.

3. Build the OpenCV library.

a. Open the file “CMakeLists.txt” in the folder “$OPCV/android” and replace line 60:
set(NDK_ROOT "$ENV{HOME}/android-ndk-r4-crystax" CACHE STRING "the
crystax ndk directory")

with:
set(NDK_ROOT "$ENV{NDK}")

b. Open the file “sample.local.env.mk” in the folder “$OPCV/android/android-jni” and

replace line 7:
ANDROID_NDK_ROOT=$(HOME)/android-ndk-r4-crystax

with:
ANDROID_NDK_ROOT=$(NDK)

c. Execute these commands:

cd $OPCV/android
mkdir build
cd build
cmake ..

d. Open the file “android-opencv.mk” in the folder “$OPCV/android/build”. Remove

the following expression from line 17:
$(OPENCV_ROOT)/modules/index.rst/include

This expression causes a compilation error if included.

e. Execute the following command to compile the OpenCV libraries:
make

This compilation can take a while, maybe 30 minutes or more.

4. Build the Java Native Interface (JNI) to the OpenCV library.
a. Execute the command

android list targets -c

and keep note of one of the Android versions displayed (e.g. android-19)

b. Open the file “project_create.sh” in the folder “$OPCV/android/android-jni” and add
--target android-XX

at the end of the last line (after “--path .”), where you should replace the version
number with your version.

c. Execute the following commands
cd $OPCV/android/android-jni

5	

	

make
make
sh ./project_create.sh
cp project.properties default.properties
ant debug

__

Part II: Developing an OpenCV Camera Application

Building the Default Camera Application

First, we will build and run the default camera application included in the OpenCV package.
This application will demonstrate how to extract feature keypoints supported by OpenCV
from viewfinder frames captured through the phone’s camera and then overlay these
keypoints in the viewfinder.

1. Execute the following command:

cd $OPCV/android/apps/CVCamera

2. Edit the file “sample.local.env.mk” in the current folder and replace line 3:
ANDROID_NDK_ROOT=$(HOME)/android-ndk-r4-crystax

with:
ANDROID_NDK_ROOT=$(NDK)

3. Like in part I of this tutorial, open the file “project_create.sh” and add

--target android-19

at the end of the last line (after “--path .”), where you should replace the version number
with your version.

4. Make sure your device is connected to your computer. Execute the following commands:
make
make
sh ./project_create.sh
cp project.properties default.properties
ant debug
ant debug install

Assuming no errors occurred in the above steps, an application called “CVCamera” should
have been installed to your Android device. Try opening the application and switching
between the different feature keypoints (FAST, STAR, SURF).

More information about the different keypoint types can be found in the OpenCV
documentation:
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html

Building Our Improved Camera Application

6	

	

Next, we will make some improvements to the previous camera application. Specifically, we
will address the following issues:
• In the default application, the keypoints drawn in the viewfinder are sometimes a little

hard to see against the background.
• In the default application, the keypoints are all drawn at the same scale, giving no

indication of the true underlying scale, which is important to know for multi-scale
detectors like SURF.

• In the default application, the popular Maximally Stable Extremal Region (MSER) is not
included.

All three issues are fixed in our improved camera application:
• We enhance the visibility of the keypoints against a cluttered background by drawing

yellow-on-black keypoints.
• We resize each keypoint according to its true underlying scale for multi-scale detectors

like SURF.
• We add MSER keypoints as a new option to the three other types (FAST, STAR, SURF).

MSER actually runs a lot faster than SURF.

Here are the steps to build the new CVCamera applications.

1. Download and unzip the following zip file to the “$OPCV/android/apps” folder:

http://ee368.stanford.edu/Android/OpenCV/CVCamera_MSER.zip

2. In this folder, edit the “project_create.sh” script with the relevant android version and
execute these commands:
sh project_create.sh
make clean
make V=0
ant clean
ant debug
ant debug install

When the new CVCamera application runs, you have the options shown in Figure 3.
Choosing “MSER” yields the type of keypoints shown in Figure 1.

7	

	

Figure 3. Menu for choosing between different types of feature keypoints.

Using Eclipse to Compile NDK Applications

Using the command line to compile and link the NDK applications can become tedious after
a while. Fortunately, there is a way to integrate the compilation and linking process into
Eclipse. After we perform the integration, each time a C/C++ source file in the project
changes, Eclipse will perform compilation and linking on our behalf.

Here are the required steps for integration.

1. Import “Android JNI” project into Eclipse.

a. Open Eclipse. Choose File > New > Project > Android > Android Project from
Existing Source.

b. Browse for the full path to the “Android OpenCV JNI” project, for example:
/home/username/Android/opencv/android/android-jni

c. Make sure the project name is “OpenCV”. Click Finish.

d. Choose Project > Properties. Click on Java Compiler. Make sure “Enable project
specific settings” is selected. Then, make sure the “Compiler compliance levels” is at
least 1.6. Accept any warnings about rebuilding the project.

2. Import “CVCamera_MSER” project into Eclipse.

a. Import the “CVCamera_MSER” project into Eclipse following the same type of
instructions as in Step 1. Be sure to find the full path to the “CVCamera_MSER”
project, for example:
/home/username/Android/opencv/android/apps/CVCamera_MSER

8	

	

b. Choose Project > Properties. Click on Project References. Make sure the OpenCV

project is checked.

c. Choose Project > Properties. Click on Builders. Click New. Choose Program.

d. In the Main tab, enter the following information and then click Apply.
i. Name: Native Builder

ii. Location: /usr/bin/make
iii. Working Directory:

/home/username/Android/opencv/android/apps/CVCamera_MSER
iv. Arguments: V=0

e. In the Refresh tab, execute the following steps and then click Apply.

i. Make sure “Refresh resources upon completion” is checked.
ii. Select “Specify resources”.

iii. Make sure “Recursively include sub-folders” is checked.
iv. Click on Specify Resources, make sure (only) “CVCamera_MSER/libs” is

checked, and click Finish.

f. In the Build Options tab, execute the following steps and then click Apply.
i. Make sure “After a Clean” is checked.

ii. Make sure “During manual builds” is checked.
iii. Make sure “During auto builds” is checked.
iv. Make sure “During a Clean” is not checked.
v. Click on Specify Resources, make sure (only) “CVCamera_MSER/jni” is

checked, and click Finish.

g. Try adding a comment to one of the “.cpp” files in the “jni” folder and save the
changes. Eclipse should automatically invoke the compilation and linking process and
then take the place of Ant in packaging everything into an “.apk” file.

