Tutorial on OpenCYV for Android Setup

EE368/CS232 Digital Image Processing, Winter 2019

Introduction

In this tutorial, we will learn how to install OpenCV for Android on your computer and how to
build Android applications using OpenCV functions. First, we will explain how to download and
install the OpenCV library onto your computer. Second, we will explain how to build applications
that directly call OpenCV functions on the viewfinder frames of the Android device, as shown in
Figure 1.

Figure 1. Android application drawing face detections on a viewfinder frame.

Please note that this tutorial assumes that you have successfully completed the first Android
tutorial for EE368/CS232, “Tutorial on Basic Android Setup”, which explains how to install the
Android Studio IDE. You will need to have already installed all the software tools mentioned in
that other tutorial before moving onto this tutorial.

Part I: Installing OpenCYV for Android

Downloading and Installing Android NDK
The Android NDK enables us to compile and run native C/C++ code on Android. The native
build process used by the OpenCV samples has been deprecated in the most recent NDK
version so instead we will install an older release of the NDK.

Go to the following page:
https://developer.android.com/ndk/downloads/older releases

1

Download the NDK revision 17¢ for your platform and unzip it in the location of your choice.
In Android Studio, open the window File > Project Structure.

In the section “SDK Location”, set the path to “Android NDK Location” to the path of the
directory you just unzipped.

Downloading and Installing OpenCV SDK for Android
Now, we are ready to download and install the OpenCV SDK.

1.

2.

Download the version 2.4.13.6 of the SDK from this website:

https://sourceforge.net/projects/opencvlibrary/files/opencv-android/

Unzip the downloaded file to a location without spaces in the path, for example:

(macOS) /Users/YourName/Android/OpenCV-android-sdk

(Linux) /home/YourName/Android/OpenCV-android-sdk

(Windows) c:\\Android\\OpenCV-android-sdk

In the rest of the tutorial, we will refer to this location as $OPENCV_PATH/OpenCV-
android-sdk.

Part II: Running OpenCV Sample Applications

Running OpenCV Samples

OpenCV provides many sample projects that can be used as starting points for larger projects.
Since these projects were generated with Eclipse, there is a bit of work to make them run under
Android Studio. We will show you how to import the Face Detection project, which allow you to
see real-time face detections like in Figure 1 displayed on the mobile device.

1.

If the project does not have a native component (i.e. there is a “jni” folder in the sample
project), you first need to copy the OpenCV libraries into the sample, before you even
import it. In order to do that, copy the directory $OPENCV_PATH/OpenCV-android-
sdk/sdk/native/libs into $OPENCV_PATH/OpenCV-android-sdk/samples/$SAMPLE
where $SAMPLE is the name of the sample we are importing (e.g2. color-blob-detection).
Click File > New > Import Project.

Choose the sample that you want in the OpenCV SDK. For example the Face Detection
sample can be found at: $OPENCV_PATH/OpenCV-android-sdk/samples/face-
detection. Click Open.

Keep the default settings and click Next, then Finish.

At this point the project will probably fail to sync. If the project syncs properly, go directly
to step 10. Otherwise, continue with the next steps to fix the issues.

Click the “Project” button in the top left corner of the Android Studio window to open the
side panel. Change the drop-down menu at the top of this panel to Project and open the
current module (e.g. face-detection), so that you can access the various files of that project.
Depending on the error message you get, you may need to complete step 7, 8, 9 or 10 (most
likely, all of them). After you complete each step, attempt to sync again by clicking the

“Sync Project with Gradle Files” icon in the toolbar (make sure the toolbar is shown by
clicking View > Toolbar).

- ™ . . 1
HESTZ ¢ 2 S . ML ice
B Project ~ D = | ¥ I
face-detection ~/AndroidStudioProjects/face-de!

.gradle

.idea

gradle
iiopenCVLibrary24136

src
main
aidl
java
res
‘@ AndroidManifest.xml
* build.gradle
@ INT.XM
iopenCVLibrary24136.iml
openCVSamplefacedetection
src
main
java
jni
res

= AndroidManifest.xml

*> build.gradle

= gradlew

= gradlew.bat
= import-summary.txt
11 local.properties
& settings.gradle
|lll External Libraries
7 Scratches and Consoles

Figure 2. Screenshot of the “Project” panel in Android Studio.

Complete this step if the error message is something like:
Could not find com.android.tools.build:gradle:3.2.1.

Open the file build.gradle at the root of the project (file circled in red in Fig. 2) and
insert a line google () before each line jcenter (). This is done twice (before line 4 and
before line 13). Alternatively this can be done directly by clicking the automatic fix “Add
Google Maven repository and sync project”.

Complete this step if the error message is something like:
Failed to find target with hash string 'android-14' in:

a. The process fails because it tries to build with an outdated version of the SDK
platform. Among the subfolders of your project there should be one corresponding
to the project (e.g. openCVSamplefacedetection) and another one corresponding to
the OpenCV library (e.g. openCVLibrary24134). Open the build.gradle file located
in each of these two subfolders (files circled in green and blue in Fig. 2).

b. Change the value of the number next to compileSdkVersion so that it refers to the
SDK platform version that you installed. If you are not sure which version you
have, open the SDK Manager by clicking the icon circled below in the toolbar.

3

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

Open the SDK Platforms tab and note down the number in the API Level column
for one of the platforms installed.

HE S ¢ 2 A - L@ o
c. In some cases it may be needed to change the value of the buildToolsVersion as
well. You can also find it in the SDK Manager under the SDK Tools tab. You will
need to click the “Show Package Details” checkbox so that it shows the version

number for “Android SDK Build - Tools”.
Complete this step if the error message is something like:
Configuration 'compile' is obsolete and has been replaced with
'implementation' and 'api'.
Open the build.gradle file circled in blue in Fig. 2. Replace the line
compile project(':openCVLibrary24136"')
with
api project(':openCVLibrary24136")
Complete this step if the error message is something like:
The minSdk version should not be declared in the android manifest file.

Open the AndroidManifest.xml files circled in yellow in Fig. 2. In both files find and delete

the line
<uses-sdk android:minSdkVersion="8" />

If the project does not have a native component (i.e. there is a “jni” folder in the original
sample project), you can stop here and run it like a normal project. If it does, follow the
next steps to link the native C++ library.

If it is not open yet, open the left side panel (cf. step 6). Change the drop-down menu at the
top of this panel Android.

Right click on the current project module (e.g. openCVSamplefacedetection) and choose
Link C++ Project with Gradle.

Set the “Build System” as ndk-build and set the “Project Path” to the location of the
Android.mk file in the current project. For the Face Detection sample, it should be located
in openCvSamplefacedetection/src/main/jni/Android.mk. Make sure you select the
file that is located in the current imported project, not the one in the original location in the
OpenCV SDK. Click OK.

Open the Android.mk file under “External build files” in the left side panel.

Now that we are running this project from a different location than the original sample, the
path to the OpenCV.mk file needs to be wupdated. Find the line “include
../../sdk/native/jni/OpencVv.mk” and update the path. If you installed at the location

we recommended, the path should be:
$OPENCV_PATH/OpenCV-android-sdk/sdk/native/jni/OpenCV.mk

Open the build.gradle script for the current module. It should now be found under “Gradle
scripts” in the left panel. Make sure you are opening the correct script (for the Face
Detection sample, the module name is openCV Samplefacedetection).

Locate the ndk block that should start around line 12 and add the line:

abiFilters "armeabi-v7a"

The project should now sync and build without problem. You can run it on your Android
device. (Note if you are using an older version of the OpenCV SDK: on the first launch,
you will most likely be prompted to install the OpenCV Manager app onto your device,
which you need to do).

Let us know if you have trouble during this process. The face detection project can also be found
on the EE368 git repository as an Android Studio project, compatible with the latest version of
Android Studio. The only steps necessary to make it run are to set the path to the NDK (if
necessary) and to ensure that the path to the OpenCV.mk file is correct in the Android.mk file (step
16 above). If that path is incorrect, Android Studio will notify you and allow you to access this file
by clicking “Open File”. A sync is needed after modification of this file.

You are strongly encouraged to try other OpenCV samples.

Modifying an OpenCV Sample

In this part, we will modify an existing OpenCV sample. Import the tutorial-2-
mixedprocessing sample using the same process as above. We will add some code to see a locally
adaptive binarization of some text document like in Figure 2 displayed on the mobile device.

1. Open Tutorial2Activity.java, which is the main Java source file.

2. At the top of the file, add:
private static final int VIEW MODE THRESH = 3;
private Menultem mItemPreviewThresh;

3. In the method “onCreateOptionsMenu”, add:
mItemPreviewThresh = menu.add("Thresh.");

4. In the method “onCameraFrame”, add:

case VIEW MODE THRESH:

mRgba = inputFrame.rgba() ;

int maxValue = 255;

int blockSize = 61;

int meanOffset = 15;

Imgproc.adaptiveThreshold (
inputFrame.gray (),
mIntermediateMat,
maxValue,
Imgproc.ADAPTIVE THRESH MEAN C,
Imgproc.THRESH BINARY INV,
blockSize,
meanOffset

)

Imgproc.cvtColor (
mIntermediateMat,
mRgba,
Imgproc.COLOR GRAYZRGBA,
4

)

break;

5. In the method “onOptionsltemSelected”, add:
else 1f (item == mItemPreviewThresh) {
mViewMode = VIEW MODE THRESH;
}

The full project can be found on the git repository under Tutorial2/AdaptiveBinarization.

We can look further at the source code of the sample OpenCV projects. All of them have a similar
structure: (i) code for initializing the camera, (ii)) code for processing and augmenting the

viewfinder frames, and (iii) code for regulating the Android activity transitions.

—_——————————————— —— ———

Computational Imaging

Guided Image Filteringo00ooi
Kaiming He, Jian Sun, and Xiaoou Tang .

Analysis of Motion Blur with a Flutter Shutter Camera for Non-linear

Motion i
Yuanyuan Ding, Scott McCloskey, and Jingyi Yu

Error-Tolerant Image Compositingc.cooovviiennneenn..
Michael W. Tao, Micah K. Johnson, and Sylvain Paris

Blind Reflectometryoouiiiiiiiiiiiiiiieiiiiiiiiniiaaaan,
Fabiano Romeiro and Todd Zickler

Photometric Stereo for Dynamic Surface Orientations

Hyeongwoo Kim, Bennett Wilburn, and Moshe Ben-Ezra

Fully Isotropic Fast Marching Methods on Cartesian Grids
Vikram Appia and Anthony Yezzi

Figure 3. Android application showing adaptive binarization of a viewfinder frame.

